No Arabic abstract
One of the most striking universal properties of the high-transition-temperature (high-$T_c$) superconductors is that they are all derived from the hole-doping of their insulating antiferromagnetic (AF) parent compounds. From the outset, the intimate relationship between magnetism and superconductivity in these copper-oxides has intrigued researchers. Evidence for this link comes from neutron scattering experiments that show the unambiguous presence of short-range AF correlations (excitations) in cuprate superconductors. Even so, the role of such excitations in the pairing mechanism and superconductivity is still a subject of controversy. For YBa$_2$Cu$_3$O$_{6+x}$, where $x$ controls the hole-doping level, the most prominent feature in the magnetic excitations spectra is the ``resonance. Here we show that for underdoped YBa$_2$Cu$_3$O$_{6.6}$, where $x$ and $T_c$ are below the optimal values, modest magnetic fields suppress the resonance significantly, much more so for fields approximately perpendicular rather than parallel to the CuO$_2$ planes. Our results indicate that the resonance measures pairing and phase coherence, suggesting that magnetism plays an important role in the superconductivity of cuprates. The persistence of a field effect above $T_c$ favors mechanisms with preformed pairs in the normal state of underdoped cuprates.
Neutron Scattering measurements for YBa$_2$Cu$_3$O$_{6.6}$ have identified small magnetic moments that increase in strength as the temperature is reduced below $T^ast$ and further increase below $T_c$. An analysis of the data shows the moments are antiferromagnetic between the Cu-O planes with a correlation length of longer than 195 AA in the $a$-$b$ plane and about 35 AA along the c-axis. The origin of the moments is unknown, and their properties are discusssed both in terms of Cu spin magnetism and orbital bond currents.
There is increasing evidence that inhomogeneous distributions of charge and spin--so-called striped phases--play an important role in determining the properties of the high-temperature superconductors. For example, recent neutron-scattering measurements on the YBa$_2$Cu$_3$O$_{7-x}$ family of materials show both spin and charge fluctuations that are consistent with the striped-phase picture. But the fluctuations associated with a striped phase are expected to be one-dimensional, whereas the magnetic fluctuations observed to date appear to display two-dimensional symmetry. We show here that this apparent two-dimensionality results from measurements on twinned crystals, and that similar measurements on substantially detwinned crystals of YBa$_2$Cu$_3$O$_{6.6}$ reveal the one-dimensional character of the magnetic fluctuations, thus greatly strengthening the striped-phase interpretation. Moreover, our results also suggest that superconductivity originates in charge stripes that extend along the b crystal axis, where the superfluid density is found to be substantially larger than for the a direction.
Understanding the magnetic excitations in high-transition temperature (high-$T_c$) copper oxides is important because they may mediate the electron pairing for superconductivity. By determining the wavevector ({bf Q}) and energy ($hbaromega$) dependence of the magnetic excitations, one can calculate the change in the exchange energy available to the superconducting condensation energy. For the high-$T_c$ superconductor YBa$_2$Cu$_3$O$_{6+x}$, the most prominent feature in the magnetic excitations is the resonance. Although the resonance has been suggested to contribute a major part of the superconducting condensation, the accuracy of such an estimation has been in doubt because the resonance is only a small portion of the total magnetic scattering. Here we report an extensive mapping of magnetic excitations for YBa$_2$Cu$_3$O$_{6.95}$ ($T_capprox 93$ K). Using the absolute intensity measurements of the full spectra, we estimate the change in the magnetic exchange energy between the normal and superconducting states and find it to be about 15 times larger than the superconducting condensation energy. Our results thus indicate that the change in the magnetic exchange energy is large enough to provide the driving force for high-$T_c$ superconductivity in YBa$_2$Cu$_3$O$_{6.95}$.
Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa$_2$Cu$_3$O$_{6+x}$ superconductors. Most of the measurements were made on a high quality crystal of YBa$_2$Cu$_3$O$_{6.6}$. It is shown that this crystal has highly ordered ortho-II chain order, and a sharp superconducting transition. Inelastic scattering measurements display a very clean spin-gap and pseudogap with any intensity at 10 meV being 50 times smaller than the resonance intensity. The crystal shows a complicated magnetic order that appears to have three components. A magnetic phase is found at high temperatures that seems to stem from an impurity with a moment that is in the $a$-$b$ plane, but disordered on the crystal lattice. A second ordering occurs near the pseudogap temperature that has a shorter correlation length than the high temperature phase and a moment direction that is at least partly along the c-axis of the crystal. Its moment direction, temperature dependence, and Bragg intensities suggest that it may stem from orbital ordering of the $d$-density wave (DDW) type. An additional intensity increase occurs below the superconducting transition. The magnetic intensity in these phases does not change noticeably in a 7 Tesla magnetic field aligned approximately along the c-axis. Searches for magnetic order in YBa$_2$Cu$_3$O$_{7}$ show no signal while a small magnetic intensity is found in YBa$_2$Cu$_3$O$_{6.45}$ that is consistent with c-axis directed magnetic order. The results are contrasted with other recent neutron measurements.
We report on the effects of hydrostatic pressure (HP) on the charge density wave observed in underdoped cuprates. We studied YBa$_2$Cu$_3$O$_{6.6}$ ($T_c$=61 K) using high-resolution inelastic x-ray scattering (IXS), and reveal an extreme sensitivity of the phonon anomalies related to the charge density wave (CDW) order to HP. The amplitudes of the normal state broadening and superconductivity induced phonon softening at Q$_{CDW}$ rapidly decrease as HP is applied, resulting in the complete suppression of signatures of the CDW below $sim$1 GPa. Additional IXS measurements on YBa$_2$Cu$_3$O$_{6.75}$ demonstrate that this very rapid effect cannot be explained by pressure-induced modification of the doping level and highlight the different role of external pressure and doping in tuning the phase diagram of the cuprates. Our results provide new insights into the mechanisms underlying the CDW formation and its interplay with superconductivity.