Sporadic randomness, Maxwells Demon and the Poincare recurrence times


Abstract in English

In the case of fully chaotic systems the distribution of the Poincarerecurrence times is an exponential whose decay rate is the Kolmogorov-Sinai(KS) entropy.We address the discussion of the same problem, the connection between dynamics and thermodynamics,in the case of sporadic randomness,using the Manneville map as a prototype of this class of processes. We explore the possibility of relating the distribution of Poincare recurrence times to `thermodynamics,in the sense of the KS entropy,also in the case of an inverse power law. This is the dynamic property that Zaslavsly [Phys.Today(8), 39(1999)] finds to be responsible for a striking deviation from ordinary statistical mechanics under the form of Maxwells Demon effect. We show that this way of estabi- lishing a connection between thermodynamics and dynamics is valid only in the case of strong chaos. In the case of sporadic randomness, resulting at long times in the Levy diffusion processes,the sensitivity to initial conditions is initially an inverse pow erlaw,but it becomes exponential in the long-time scale, whereas the distribution of Poincare times keeps its inverse power law forever. We show that a nonextensive thermodynamics would imply the Maxwells Demon effect to be determined by memory and thus to be temporary,in conflict with the dynamic approach to Levy statistics. The adoption of heuristic arguments indicates that this effect,is possible, as a form of genuine equilibrium,after completion of the process of memory erasure.

Download