Do you want to publish a course? Click here

Pseudo--epsilon expansion of six--loop renormalization group functions of an anisotropic cubic model

114   0   0.0 ( 0 )
 Added by Yurij Holovatch
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

Six-loop massive scheme renormalization group functions of a d=3-dimensional cubic model (J.M. Carmona, A. Pelissetto, and E. Vicari, Phys. Rev. B vol. 61, 15136 (2000)) are reconsidered by means of the pseudo-epsilon expansion. The marginal order parameter components number N_c=2.862(5) as well as critical exponents of the cubic model are obtained. Our estimate N_c<3 leads in particular to the conclusion that all ferromagnetic cubic crystals with three easy axis should undergo a first order phase transition.



rate research

Read More

We handle divergent {epsilon} expansions in different universality classes derived from modified Landau-Wilson Hamiltonian. Landau-Wilson Hamiltonian can cater for describing critical phenomena on a wide range of physical systems which differ in symmetry conditions and the associated universality class. Numerically critical parameters are the most interesting physical quantities which characterize the singular behaviour around the critical point. More precise estimates are obtained for these critical parameters than previous predictions from Pade based methods and Borel with conformal mapping procedure. We use simple methods based on continued functions and Borel-Leroy transformation to achieve this. These accurate results are helpful in strengthening existing conclusions in different {phi}^4 models.
The two-dimensional ferromagnetic anisotropic Ashkin-Teller model is investigated through a real-space renormalization-group approach. The critical frontier, separating five distinct phases, recover all the known exacts results for the square lattice. The correlation length $( u_T)$ and crossover $(phi)$ critical exponents are also calculated. With the only exception of the four-state Potts critical point, the entire phase diagram belongs to the Ising universality class.
127 - M. Shpot , H. W. Diehl 2001
We investigate the critical behavior that d-dimensional systems with short-range forces and a n-component order parameter exhibit at Lifshitz points whose wave-vector instability occurs in a m-dimensional isotropic subspace of ${mathbb R}^d$. Utilizing dimensional regularization and minimal subtraction of poles in $d=4+{mover 2}-epsilon$ dimensions, we carry out a two-loop renormalization-group (RG) analysis of the field-theory models representing the corresponding universality classes. This gives the beta function $beta_u(u)$ to third order, and the required renormalization factors as well as the associated RG exponent functions to second order, in u. The coefficients of these series are reduced to m-dependent expressions involving single integrals, which for general (not necessarily integer) values of $min (0,8)$ can be computed numerically, and for special values of m analytically. The $epsilon$ expansions of the critical exponents $eta_{l2}$, $eta_{l4}$, $ u_{l2}$, $ u_{l4}$, the wave-vector exponent $beta_q$, and the correction-to-scaling exponent are obtained to order $epsilon^2$. These are used to estimate their values for d=3. The obtained series expansions are shown to encompass both isotropic limits m=0 and m=d.
Using Environmentally Friendly Renormalization, we present an analytic calculation of the series for the renormalization constants that describe the equation of state for the $O(N)$ model in the whole critical region. The solution of the beta-function equation, for the running coupling to order two loops, exhibits crossover between the strong coupling fixed point, associated with the Goldstone modes, and the Wilson-Fisher fixed point. The Wilson functions $gamma_lambda$, $gamma_phi$ and $gamma_{phi^2}$, and thus the effective critical exponents associated with renormalization of the transverse vertex functions, also exhibit non-trivial crossover between these fixed points.
We present a functional renormalization group (fRG) study of the two dimensional Hubbard model, performed with an algorithmic implementation which lifts some of the common approximations made in fRG calculations. In particular, in our fRG flow; (i) we take explicitly into account the momentum and the frequency dependence of the vertex functions; (ii) we include the feedback effect of the self-energy; (iii) we implement the recently introduced multiloop extension which allows us to sum up {emph{all}} the diagrams of the parquet approximation with their exact weight. Due to its iterative structure based on successive one-loop computations, the loop convergence of the fRG results can be obtained with an affordable numerical effort. In particular, focusing on the analysis of the physical response functions, we show that the results become {emph{independent}} from the chosen cutoff scheme and from the way the fRG susceptibilities are computed, i.e., either through flowing couplings to external fields, or through a post-processing contraction of the interaction vertex at the end of the flow. The presented substantial refinement of fRG-based computation schemes paves a promising route towards future quantitative fRG analyses of more challenging systems and/or parameter regimes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا