No Arabic abstract
A recent experiment [Deng et al., Nature 398, 218(1999)] demonstrated four-wave mixing of matter wavepackets created from a Bose-Einstein condensate. The experiment utilized light pulses to create two high-momentum wavepackets via Bragg diffraction from a stationary Bose-Einstein condensate. The high-momentum components and the initial low momentum condensate interact to form a new momentum component due to the nonlinear self-interaction of the bosonic atoms. We develop a three-dimensional quantum mechanical description, based on the slowly-varying-envelope approximation, for four-wave mixing in Bose-Einstein condensates using the time-dependent Gross-Pitaevskii equation. We apply this description to describe the experimental observations and to make predictions. We examine the role of phase-modulation, momentum and energy conservation (i.e., phase-matching), and particle number conservation in four-wave mixing of matter waves, and develop simple models for understanding our numerical results.
A scissors mode of a rotating Bose-Einstein condensate is investigated both theoretically and experimentally. The condensate is confined in an axi-symmetric harmonic trap, superimposed with a small rotating deformation. For angular velocities larger than $omega_perp/sqrt2 $, where $omega_perp$ is the radial trap frequency, the frequency of the scissors mode is predicted to vanish like the square root of the deformation, due to the tendency of the system to exhibit spontaneous rotational symmetry breaking. Measurements of the frequency confirm the predictions of theory. Accompanying characteristic oscillations of the internal shape of the condensate are also calculated and observed experimentally.
Coherent coupling between atoms and molecules in a Bose-Einstein condensate (BEC) has been observed. Oscillations between atomic and molecular states were excited by sudden changes in the magnetic field near a Feshbach resonance and persisted for many periods of the oscillation. The oscillation frequency was measured over a large range of magnetic fields and is in excellent quantitative agreement with the energy difference between the colliding atom threshold energy and the energy of the bound molecular state. This agreement indicates that we have created a quantum superposition of atoms and diatomic molecules, which are chemically different species.
Interfacial profiles and interfacial tensions of phase-separated binary mixtures of Bose-Einstein condensates are studied theoretically. The two condensates are characterized by their respective healing lengths $xi_1$ and $xi_2$ and by the inter-species repulsive interaction $K$. An exact solution to the Gross-Pitaevskii (GP) equations is obtained for the special case $xi_2/xi_1 = 1/2$ and $K = 3/2$. Furthermore, applying a double-parabola approximation (DPA) to the energy density featured in GP theory allows us to define a DPA model, which is much simpler to handle than GP theory but nevertheless still captures the main physics. In particular, a compact analytic expression for the interfacial tension is derived that is useful for all $xi_1, xi_2$ and $K$. An application to wetting phenomena is presented for condensates adsorbed at an optical wall. The wetting phase boundary obtained within the DPA model nearly coincides with the exact one in GP theory.
We describe the ground state of a large, dilute, neutral atom Bose- Einstein condensate (BEC) doped with N strongly coupled mutually indistinguishable, bosonic neutral atoms (referred to as impurity) in the polaron regime where the BEC density response to the impurity atoms remains significantly smaller than the average density of the surrounding BEC. We find that N impurity atoms (N is not one) can self-localize at a lower value of the impurity-boson interaction strength than a single impurity atom. When the bare short-range impurity-impurity repulsion does not play a significant role, the self-localization of multiple bosonic impurity atoms into the same single particle orbital (which we call co-self-localization) is the nucleation process of the phase separation transition. When the short-range impurity-impurity repulsion successfully competes with co-self-localization, the system may form a stable liquid of self-localized single impurity polarons.
We explore, both experimentally and theoretically, the response of an elongated Bose-Einstein condensate to modulated interactions. We identify two distinct regimes differing in modulation frequency and modulation strength. Longitudinal surface waves are generated either resonantly or parametrically for modulation frequencies near the radial trap frequency or twice the trap frequency, respectively. The dispersion of these waves, the latter being a Faraday wave, is well-reproduced by a mean-field theory that accounts for the 3D nature of the elongated condensate. In contrast, in the regime of lower modulation frequencies we find that no clear resonances occur, but with increased modulation strength, the condensate forms an irregular granulated distribution that is outside the scope of a mean-field approach. We find that the granulated condensate is characterized by large quantum fluctuations and correlations, which are well-described with single-shot simulations obtained from wavefunctions computed by a beyond mean-field theory at zero temperature, the multiconfigurational time-dependent Hartree for bosons method.