Do you want to publish a course? Click here

Submonolayer epitaxy with impurities

61   0   0.0 ( 0 )
 Added by Miroslav Kotrla
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

The effect of impurities on epitaxial growth in the submonolayer regime is studied using kinetic Monte Carlo simulations of a two-species solid-on-solid growth model. Both species are mobile, and attractive interactions among adatoms and between adatoms and impurities are incorporated. Impurities can be codeposited with the growing material or predeposited prior to growth. The activated exchange of impurities and adatoms is identified as the key kinetic process in the formation of a growth morphology in which the impurities decorate the island edges. The dependence of the island density on flux and coverage is studied in detail. The impurities strongly increase the island density without appreciably changing its power-law dependence on flux, apart from a saturation of the flux dependence at high fluxes and low coverages. A simple analytic theory taking into account only the dependence of the adatom diffusion constant on impurity coverage is shown to provide semi-quantitative agreement with many features observed in the simulations.



rate research

Read More

Molecular Dynamics simulations are reported for the structural and thermodynamic properties of submonolayer xenon adsorbed on the $(111)$ surface of platinum for temperatures up to the (apparently incipient) triple point and beyond. While the motion of the atoms in the surface plane is treated with a standard two-dimensional molecular dynamics simulation, the model takes into consideration the thermal excitation of quantum states associated with surface-normal dynamics in an attempt to describe the apparent smoothing of the corrugation with increasing temperature. We examine the importance of this thermal smoothing to the relative stability of several observed and proposed low-temperature structures. Structure factor calculations are compared to experimental results in an attempt to determine the low temperature structure of this system. These calculations provide strong evidence that, at very low temperatures, the domain wall structure of a xenon monolayer adsorbed on a Pt$(111)$ substrate possesses a chaotic-like nature, exhibiting long-lived meta-stable states with pinned domain walls, these walls having narrow widths and irregular shapes. This result is contrary to the standard wisdom regarding this system, namely that the very low temperature phase of this system is a striped incommensurate phase. We present the case for further experimental investigation of this and similar systems as possible examples of chaotic low temperature phases in two dimensions.
207 - Miroslav Kotrla 1999
We study the dynamics of island nucleation in the presence of adsorbates using kinetic Monte Carlo simulations of a two-species growth model. Adatoms (A-atoms) and impurities (B-atoms) are codeposited, diffuse and aggregate subject to attractive AA- and AB-interactions. Activated exchange of adatoms with impurities is identified as the key process to maintain decoration of island edges by impurities during growth. While the presence of impurities strongly increases the island density, a change in the scaling of island density with flux, predicted by a rate equation theory for attachment-limited growth [D. Kandel, Phys. Rev. Lett. 78, 499 (1997)], is not observed. We argue that, within the present model, even completely covered island edges do not provide efficient barriers to attachment.
We present results of kinetic Monte Carlo simulations of a modified Ziff-Gulari-Barshad model for the reaction CO+O --> CO_2 on a catalytic surface. Our model includes impurities in the gas phase, CO desorption, and a modification known to eliminate the unphysical O poisoned phase. The impurities can adsorb and desorb on the surface, but otherwise remain inert. In a previous work that did not include CO desorption [G. M. Buendia and P. A. Rikvold, Phys. Rev. E, 85 031143 (2012)], we found that the impurities have very distinctive effects on the phase diagram and greatly diminish the reactivity of the system. If the impurities do not desorb, once the system reaches a stationary state, the CO_2 production disappears. When the impurities are allowed to desorb, there are regions where the CO_2 reaction window reappears, although greatly reduced. Following experimental evidence that indicates that temperature effects are crucial in many catalytic processes, here we further analyze these effects by including a CO desorption rate. We find that the CO desorption has the effect to smooth the transition between the reactive and the CO rich phase, and most importantly it can counteract the negative effects of the presence of impurities by widening the reactive window such that now the system remains catalytically active in the whole range of CO pressures.
We study the heterogeneous nucleation of Ising model on complex networks under a non-equilibrium situation where the impurities perform degree-biased motion controlled by a parameter alpha. Through the forward flux sampling and detailed analysis on the nucleating clusters, we find that the nucleation rate shows a nonmonotonic dependence on alpha for small number of impurities, in which a maximal nucleation rate occurs at alpha=0 corresponding to the degree-uncorrelated random motion. Furthermore, we demonstrate the distinct features of the nucleating clusters along the pathway for different preference of impurities motion, which may be used to understand the resonance-like dependence of nucleation rate on the motion bias of impurities. Our theoretical analysis shows that the nonequilibrium diffusion of impurities can always induce a positive energy flux that can facilitate the barrier-crossing nucleation process. The nonmonotonic feature of the average value of the energy flux with alpha may be the origin of our simulation results.
Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role for the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and for designing devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al, are grown with epitaxially matched single plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and appears to solve the soft-gap problem in superconducting hybrid structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا