Do you want to publish a course? Click here

Hyperbolic Billiards on Surfaces of Constant Curvature

76   0   0.0 ( 0 )
 Added by Gutkin Boris
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We establish sufficient conditions for the hyperbolicity of the billiard dynamics on surfaces of constant curvature. This extends known results for planar billiards. Using these conditions, we construct large classes of billiard tables with positive Lyapunov exponents on the sphere and on the hyperbolic plane.



rate research

Read More

109 - Boris Gutkin 2000
We consider classical billiards on surfaces of constant curvature, where the charged billiard ball is exposed to a homogeneous, stationary magnetic field perpendicular to the surface. We establish sufficient conditions for hyperbolicity of the billiard dynamics, and give lower estimation for the Lyapunov exponent. This extends our recent results for non-magnetic billiards on surfaces of constant curvature. Using these conditions, we construct large classes of magnetic billiard tables with positive Lyapunov exponents on the plane, on the sphere and on the hyperbolic plane.
An approach due to Wojtkovski [9], based on the Jacobi fields, is applied to study sets of 3-period orbits in billiards on hyperbolic plane and on two-dimensional sphere. It is found that the set of 3-period orbits in billiards on hyperbolic plane, as in the planar case, has zero measure. For the sphere, a new proof of Baryshnikovs theorem is obtained which states that 3-period orbits can form a set of positive measure provided a natural condition on the orbit length is satisfied.
We investigate ruled surfaces in 3d Riemannian manifolds, i.e., surfaces foliated by geodesics. In 3d space forms, we find the striction curve, distribution parameter, and the first and second fundamental forms, from which we obtain the Gaussian and mean curvatures. We also provide model-independent proof for the known fact that extrinsically flat surfaces in space forms are ruled. This allows us to identify the necessary and sufficient condition for an extrinsically flat surface in a generic 3d manifold to be ruled. Further, we show that if a 3d manifold has an extrinsically flat surface tangent to any 2d plane and if they are all ruled surfaces, then the manifold is a space form. As an application, we prove that there must exist extrinsically flat surfaces in the Riemannian product of the hyperbolic plane, or sphere, with the reals and that does not make a constant angle with the real direction.
It is shown that the equation which describes constant mean curvature surface via the generalized Weierstrass-Enneper inducing has Hamiltonian form. Its simplest finite-dimensional reduction has two degrees of freedom, integrable and its trajectories correspond to well-known Delaunay and do Carmo-Dajzcer surfaces (i.e., helicoidal constant mean curvature surfaces).
A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا