Do you want to publish a course? Click here

Driven Maps and the Emergence of Ordered Collective Behavior in Globally Coupled Maps

59   0   0.0 ( 0 )
 Added by Antonio Parravano
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

A method to predict the emergence of different kinds of ordered collective behaviors in systems of globally coupled chaotic maps is proposed. The method is based on the analogy between globally coupled maps and a map subjected to an external drive. A vector field which results from this analogy appears to govern the transient evolution of the globally coupled system. General forms of global couplings are considered. Some simple applications are given.



rate research

Read More

We consider a lattice of weakly coupled expanding circle maps. We construct, via a cluster expansion of the Perron-Frobenius operator, an invariant measure for these infinite dimensional dynamical systems which exhibits space-time-chaos.
We investigate the processes of synchronization and phase ordering in a system of globally coupled maps possessing bistable, chaotic local dynamics. The stability boundaries of the synchronized states are determined on the space of parameters of the system. The collective properties of the system are characterized by means of the persistence probability of equivalent spin variables that define two phases, and by a magnetization-like order parameter that measures the phase-ordering behavior. As a consequence of the global interaction, the persistence probability saturates for all values of the coupling parameter, in contrast to the transition observed in the temporal behavior of the persistence in coupled maps on regular lattices. A discontinuous transition from a non-ordered state to a collective phase-ordered state takes place at a critical value of the coupling. On an interval of the coupling parameter, we find three distinct realizations of the phase-ordered state, which can be discerned by the corresponding values of the saturation persistence. Thus, this statistical quantity can provide information about the transient behaviors that lead to the different phase configurations in the system. The appearance of disordered and phase-ordered states in the globally coupled system can be understood by calculating histograms and the time evolution of local map variables associated to the these collective states.
309 - Carace Gutierrez , 2020
Initially, the logistic map became popular as a simplified model for population growth. In spite of its apparent simplicity, as the population growth-rate is increased the map exhibits a broad range of dynamics, which include bifurcation cascades going from periodic to chaotic solutions. Studying coupled maps allows to identify other qualitative changes in the collective dynamics, such as pattern formations or hysteresis. Particularly, hysteresis is the appearance of different attracting sets, a set when the control parameter is increased and another set when it is decreased -- a multi-stable region. In this work, we present an experimental study on the bifurcations and hysteresis of nearly identical, coupled, logistic maps. Our logistic maps are an electronic system that has a discrete-time evolution with a high signal-to-noise ratio ($sim10^6$), resulting in simple, precise, and reliable experimental manipulations, which include the design of a modifiable diffusive coupling configuration circuit. We find that the characterisations of the isolated and coupled logistic-maps dynamics agrees excellently with the theoretical and numerical predictions (such as the critical bifurcation points and Feigenbaums bifurcation velocity). Here, we report multi-stable regions appearing robustly across configurations, even though our configurations had parameter mismatch (which we measure directly from the components of the circuit and also infer from the resultant dynamics for each map) and were unavoidably affected by electronic noise.
As a model to provide a hands-on, elementary understanding of chaotic dynamics in dimension 3, we introduce a $C^2$-open set of diffeomorphisms of whose cross sections are Cantor sets; the intersection of the unstable and stable sets contains a fractal set of Hausdorff dimension nearly $1$. Our proof employs the thicknesses of Cantor sets.
We focus on a linear chain of $N$ first-neighbor-coupled logistic maps at their edge of chaos in the presence of a common noise. This model, characterised by the coupling strength $epsilon$ and the noise width $sigma_{max}$, was recently introduced by Pluchino et al [Phys. Rev. E {bf 87}, 022910 (2013)]. They detected, for the time averaged returns with characteristic return time $tau$, possible connections with $q$-Gaussians, the distributions which optimise, under appropriate constraints, the nonadditive entropy $S_q$, basis of nonextensive statistics mechanics. We have here a closer look on this model, and numerically obtain probability distributions which exhibit a slight asymmetry for some parameter values, in variance with simple $q$-Gaussians. Nevertheless, along many decades, the fitting with $q$-Gaussians turns out to be numerically very satisfactory for wide regions of the parameter values, and we illustrate how the index $q$ evolves with $(N, tau, epsilon, sigma_{max})$. It is nevertheless instructive on how careful one must be in such numerical analysis. The overall work shows that physical and/or biological systems that are correctly mimicked by the Pluchino et al model are thermostatistically related to nonextensive statistical mechanics when time-averaged relevant quantities are studied.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا