Perturbations due to round-off errors in computer modeling are discontinuous and therefore one cannot use results like KAM theory about smooth perturbations of twist maps. We elaborate a special approximation scheme to construct two smooth periodic on the angle perturbations of the twist map, bounding the discretized map from above and from below. Using the well known Mosers theorem we prove the existence of invariant curves for these smooth approximations. As a result we are able to prove that any trajectory of the discretized twist map is eventually periodic. We discuss also some questions, concerning the application of the intersection property in Mosers theorem and the generalization of our results for the twist map in Lobachevski plane.