Do you want to publish a course? Click here

On the low-dimensional modelling of Stratonovich stochastic differential equations

323   0   0.0 ( 0 )
 Added by Tony Roberts
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop further ideas on how to construct low-dimensional models of stochastic dynamical systems. The aim is to derive a consistent and accurate model from the originally high-dimensional system. This is done with the support of centre manifold theory and techniques. Aspects of several previous approaches are combined and extended: adiabatic elimination has previously been used, but centre manifold techniques simplify the noise by removing memory effects, and with less algebraic effort than normal forms; analysis of associated Fokker-Plank equations replace nonlinearly generated noise processes by their long-term equivalent white noise. The ideas are developed by examining a simple dynamical system which serves as a prototype of more interesting physical situations.



rate research

Read More

We prove existence and pathwise uniqueness results for four different types of stochastic differential equations (SDEs) perturbed by the past maximum process and/or the local time at zero. Along the first three studies, the coefficients are no longer Lipschitz. The first type is the equation label{eq1} X_{t}=int_{0}^{t}sigma (s,X_{s})dW_{s}+int_{0}^{t}b(s,X_{s})ds+alpha max_{0leq sleq t}X_{s}. The second type is the equation label{eq2} {l} X_{t} =ig{0}{t}sigma (s,X_{s})dW_{s}+ig{0}{t}b(s,X_{s})ds+alpha max_{0leq sleq t}X_{s},,+L_{t}^{0}, X_{t} geq 0, forall tgeq 0. The third type is the equation label{eq3} X_{t}=x+W_{t}+int_{0}^{t}b(X_{s},max_{0leq uleq s}X_{u})ds. We end the paper by establishing the existence of strong solution and pathwise uniqueness, under Lipschitz condition, for the SDE label{e2} X_t=xi+int_0^t si(s,X_s)dW_s +int_0^t b(s,X_s)ds +almax_{0leq sleq t}X_s +be min_{0leq s leq t}X_s.
160 - A.J. Roberts 1996
I describe a method, particularly suitable to implementation by computer algebra, for the derivation of low-dimensional models of dynamical systems. The method is systematic and is based upon centre manifold theory. Computer code for the algorithm is relatively simple, robust and flexible. The method is applied to two examples: one a straightforward pitchfork bifurcation, and one being the dynamics of thin fluid films.
362 - Darryl D. Holm 2019
Suppose the observations of Lagrangian trajectories for fluid flow in some physical situation can be modelled sufficiently accurately by a spatially correlated It^o stochastic process (with zero mean) obtained from data which is taken in fixed Eulerian space. Suppose we also want to apply Hamiltons principle to derive the stochastic fluid equations for this situation. Now, the variational calculus for applying Hamiltons principle requires the Stratonovich process, so we must transform from It^o noise in the emph{data frame} to the equivalent Stratonovich noise. However, the transformation from the It^o process in the data frame to the corresponding Stratonovich process shifts the drift velocity of the transformed Lagrangian fluid trajectory out of the data frame into a non-inertial frame obtained from the It^o correction. The issue is, Will non-inertial forces arising from this transformation of reference frames make a difference in the interpretation of the solution behaviour of the resulting stochastic equations? This issue will be resolved by elementary considerations.
The propagation of charged cosmic rays through the Galactic environment influences all aspects of the observation at Earth. Energy spectrum, composition and arrival directions are changed due to deflections in magnetic fields and interactions with the interstellar medium. Today the transport is simulated with different simulation methods either based on the solution of a transport equation (multi-particle picture) or a solution of an equation of motion (single-particle picture). We developed a new module for the publicly available propagation software CRPropa 3.1, where we implemented an algorithm to solve the transport equation using stochastic differential equations. This technique allows us to use a diffusion tensor which is anisotropic with respect to an arbitrary magnetic background field. The source code of CRPropa is written in C++ with python steering via SWIG which makes it easy to use and computationally fast. In this paper, we present the new low-energy propagation code together with validation procedures that are developed to proof the accuracy of the new implementation. Furthermore, we show first examples of the cosmic ray density evolution, which depends strongly on the ratio of the parallel $kappa_parallel$ and perpendicular $kappa_perp$ diffusion coefficients. This dependency is systematically examined as well the influence of the particle rigidity on the diffusion process.
Dynamical systems that are subject to continuous uncertain fluctuations can be modelled using Stochastic Differential Equations (SDEs). Controlling such systems results in solving path constrained SDEs. Broadly, these problems fall under the category of Stochastic Differential-Algebraic Equations (SDAEs). In this article, the focus is on combining ideas from the local theory of Differential-Algebraic Equations with that of Stochastic Differential Equations. The question of existence and uniqueness of the solution for SDAEs is addressed by using contraction mapping theorem in an appropriate Banach space to arrive at a sufficient condition. From the geometric point of view, a necessary condition is derived for the existence of the solution. It is observed that there exists a class of high index SDAEs for which there is no solution. Hence, computational methods to find approximate solution of high index equations are presented. The techniques are illustrated in form of algorithms with examples and numerical computations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا