No Arabic abstract
We present preliminary results of an incoming theoretical work concerning the integrated properties of the Population III clusters of stars. On the basis of synthetic Color-Magnitude Diagrams, we provide a grid of optical and near-IR colors of Simple Stellar Populations with very low metallicity (Z=10$^{-10}$ and Z=10$^{-6}$) and age which spans from 10 Myr to 15 Gyr. A comparison with higher metallicities up to 0.006 is also shown, disclosing sizable differences in the CMD morphology, integrated colors and Spectral Energy Distribution (SED).
Fragmentation often occurs in disk-like structures, both in the early Universe and in the context of present-day star formation. Supermassive black holes (SMBHs) are astrophysical objects whose origin is not well understood; they weigh millions of solar masses and reside in the centers of galaxies. An important formation scenario for SMBHs is based on collisions and mergers of stars in a massive cluster, in which the most massive star moves to the center of the cluster due to dynamical friction. This increases the rate of collisions and mergers since massive stars have larger collisional cross sections. This can lead to runaway growth of a very massive star which may collapse to become an intermediate-mass black hole. Here we investigate the dynamical evolution of Miyamoto-Nagai models that allow us to describe dense stellar clusters, including flattening and different degrees of rotation. We find that the collisions in these clusters depend mostly on the number of stars and the initial stellar radii for a given radial size of the cluster. By comparison, rotation seems to affect the collision rate by at most $20%$. For flatness, we compared spherical models with systems that have a scale height of about $10%$ of their radial extent, in this case finding a change in the collision rate of less than $25%$. Overall, we conclude that the parameters only have a minor effect on the number of collisions. Our results also suggest that rotation helps to retain more stars in the system, reducing the number of escapers by a factor of $2-3$ depending on the model and the specific realization. After two million years, a typical lifetime of a very massive star, we find that about $630$ collisions occur in typical models with $N=10^4$, $R=100$ $rm~R_odot$ and a half-mass radius of $0.1$ $rm~pc$, leading to a mass of about $6.3times10^3$ $rm~M_odot$ for the most massive object.
We investigated stellar winds from zero/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfven waves from stars with mass $M_{star}=(0.6-0.8)M_{odot}$ and metallicity $Z=(0-1)Z_{odot}$, where $M_{odot}$ and $Z_{odot}$ are the solar mass and metallicity, respectively. Alfvenic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower $Z$, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Pop.II/III stars with $Zle 0.01Z_{odot}$ is 1-2 orders of magnitude larger than that of the solar-metallicity star with the same mass, and as a result, the mass loss rate, $dot{M}$, is $(4.5-20)$ times larger. This indicates that metal accretion on low-mass Pop.III stars is negligible. The soft X-ray flux of the Pop.II/III stars is also expected to be $approx (1-30)$ times larger than that of the solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvenic wave energy is transmitted to the corona in low $Z$ stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of $dot{M}$ as $dot{M}propto L R_{star}^{11/9}M_{star}^{-10/9}T_{rm eff}^{11/2}left[max (Z/Z_{odot},0.01)right]^{-1/5}$, where $L$, $R_{star}$, and $T_{rm eff}$ are stellar luminosity, radius, and effective temperature, respectively.
We discuss the cosmological significance of the transition from the Pop III to Pop II mode of star formation in the early universe, and when and how it may occur in primordial galaxies. Observations that could detect this transition include those of element abundances in metal-poor Galactic halo stars, and of the helium reionization and associated heating of the intergalactic medium. We suggest that gamma-ray bursts may be a better probe of the end of the first-stars epoch than of Pop III stars.
We reconsider the model of neutrino production during the bright phase, first suggested in 1977, in the light of modern understanding of the role of Pop III stars and acceleration of particles in supernova shocks. We concentrate on the production of cosmogenic UHE neutrinos in supernova explosions that accompany the death of Pop III stars. Accelerated protons produce neutrinos in collisions with CMB photons. We deliberately use simplified assumptions which make our results transparent. Pop III stars are assumed to be responsible for the reionization of the universe as observed by WMAP. Since the evolution of Pop III stars is much faster than the Hubble rate, we consider the burst of UHE proton production to occur at fixed redshift (z_b=10-20). We discuss the formation of collisionless shocks and particle acceleration in the early universe. The composition of accelerated particles is expected to be proton dominated. A simple calculation is presented to illustrate the fact that the diffuse neutrinos flux from the bright phase burst is concentrated in a relatively narrow range around $7.5 times 10^{15}(20/z_b)^2$ eV. The $ u_mu$ flux may be detectable by IceCube without violating the cascade upper limit and the expected energetics of SNe associated with Pop III stars. A possible signature of the neutrino production from Pop III stars may be the detection of resonant neutrino events. For the burst at $z_b=20$ and $bar{ u}_e$-flux at the cascade upper limit, the number of resonant events in IceCube may be as high as 10 events in 5 years of observations. These events have equal energies, $E=6.3times 10^{15}$ eV, in the form of e-m cascades. Given the large uncertainties in the existing predictions of UHE cosmogenic neutrino fluxes, we argue that neutrinos from the first stars might become one of the most reliable hopes for UHE neutrino astronomy.
Synthetic photometry is a great tool for studying globular clusters, especially for understanding the nature of their multiple populations. Our goal is to quantify the errors on synthetic photometry that are caused by uncertainties on stellar and observational/calibration parameters. These errors can be taken into account when building synthetic color-magnitude diagrams (CMDs) that are to be compared to observed CMDs. We have computed atmosphere models and synthetic spectra for two stars, Pollux and Procyon, that have stellar parameters typical of turn-off and bottom red giant branch stars in globular clusters. We then varied the effective temperature, surface gravity, microturbulence, the carbon, nitrogen, and oxygen abundances, and [Fe/H]. We quantified the effect on synthetic photometry in the following filters: Johnson UBVRI and HST F275W, F336W, F410M, F438W, F555W, F606W, and F814W. We estimated the effects of extinction, atmospheric correction, and of the Vega reference spectrum on the resulting photometry. We tested the ability of our models to reproduce the observed spectral energy distribution and observed photometry of the two stars. We show that variations are generally stronger in blue filters. Dispersions on synthetic colors due to uncertainties on stellar parameters vary between less than 0.01 and to 0.04 magnitude, depending on the choice of filters. Uncertainties on the zero points, the extinction law, or the atmospheric correction affect the resulting colors at a level of a few 0.01 magnitudes in a systematic way. The models reproduce the flux-calibrated spectral energy distribution of both stars well. Comparison between synthetic and observed UBVRI photometry shows a variable degree of (dis)agreement. The observed differences likely indicate that different calibration processes are performed to obtain respectively observed and synthetic photometry.