Do you want to publish a course? Click here

Measurement of a Peak in the Cosmic Microwave Background Power Spectrum from the North American test flight of BOOMERANG

58   0   0.0 ( 0 )
 Added by Philip Mauskopf
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a measurement of the angular power spectrum of anisotropies in the Cosmic Microwave Background (CMB) from 0.3 degrees to ~10 degrees from the North American test flight of the BOOMERANG experiment. BOOMERANG is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotropies on a Long Duration Balloon flight. During a 6-hour test flight of a prototype system in 1997, we mapped > 200 square degrees at high galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26 and 16.6 arcmin FWHM respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of ~1 degree with an amplitude ~70 uK.



rate research

Read More

We use the angular power spectrum of the Cosmic Microwave Background, measured during the North American test flight of the BOOMERANG experiment, to constrain the geometry of the universe. Within the class of Cold Dark Matter models, we find that the overall fractional energy density of the universe, Omega, is constrained to be 0.85 < Omega < 1.25 at the 68% confidence level. Combined with the COBE measurement and the high redshift supernovae data we obtain new constraints on the fractional matter density and the cosmological constant.
This paper presents a measurement of the angular power spectrum of the Cosmic Microwave Background from l=75 to l=1025 (~10 to 5 degrees) from a combined analysis of four 150 GHz channels in the BOOMERANG experiment. The spectrum contains multiple peaks and minima, as predicted by standard adiabatic-inflationary models in which the primordial plasma undergoes acoustic oscillations. These results significantly constrain the values of Omega_tot, Omega_b h^2, Omega_c h^2 and n_s.
76 - N. W. Halverson 2001
We present measurements of anisotropy in the Cosmic Microwave Background (CMB) from the first season of observations with the Degree Angular Scale Interferometer (DASI). The instrument was deployed at the South Pole in the austral summer 1999--2000, and made observations throughout the following austral winter. We have measured the angular power spectrum of the CMB in the range 100<l<900 with high signal-to-noise. In this paper we review the formalism used in the analysis, in particular the use of constraint matrices to project out contaminants such as ground and point source signals, and to test for correlations with diffuse foreground templates. We find no evidence of foregrounds other than point sources in the data, and find a maximum likelihood temperature spectral index beta = -0.1 +/- 0.2 (1 sigma), consistent with CMB. We detect a first peak in the power spectrum at l approx 200, in agreement with previous experiments. In addition, we detect a peak in the power spectrum at l approx 550 and power of similar magnitude at l approx 800 which are consistent with the second and third harmonic peaks predicted by adiabatic inflationary cosmological models.
We report measurements of the CMB polarization power spectra from the January 2003 Antarctic flight of BOOMERANG. The primary results come from six days of observation of a patch covering 0.22% of the sky centered near R.A. = 82.5 deg., Dec= -45 deg. The observations were made using four pairs of polarization sensitive bolometers operating in bands centered at 145 GHz. Using two independent analysis pipelines, we measure a non-zero <EE> signal in the range 100< l <1000 with a significance 4.8-sigma, a 2-sigma upper limit of 8.6 uK^2 for any <BB> contribution, and a 2-sigma upper limit of 7.0 uK^2 for the <EB> spectrum. Estimates of foreground intensity fluctuations and the non-detection of <BB> and <EB> signals rule out any significant contribution from galactic foregrounds. The results are consistent with a Lambda-CDM cosmology seeded by adiabatic perturbations. We note that this is the first detection of CMB polarization with bolometric detectors.
130 - J. R. Bond CITA 1997
We develop two methods for estimating the power spectrum, C_l, of the cosmic microwave background (CMB) from data and apply them to the COBE/DMR and Saskatoon datasets. One method involves a direct evaluation of the likelihood function, and the other is an estimator that is a minimum-variance weighted quadratic function of the data. Applied iteratively, the quadratic estimator is not distinct from likelihood analysis, but is rather a rapid means of finding the power spectrum that maximizes the likelihood function. Our results bear this out: direct evaluation and quadratic estimation converge to the same C_ls. The quadratic estimator can also be used to directly determine cosmological parameters and their uncertainties. While the two methods both require O(N^3) operations, the quadratic is much faster, and both are applicable to datasets with arbitrary chopping patterns and noise correlations. We also discuss approximations that may reduce it to O(N^2) thus making it practical for forthcoming megapixel datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا