No Arabic abstract
We better determine the spectral flux distribution of the supernova candidate associated with GRB 970228 by modeling the spectral flux distribution of the host galaxy of this burst, fitting this model to measurements of the host galaxy, and using the fitted model to better subtract out the contribution of the host galaxy to measurements of the afterglow of this burst.
We better determine the spectral flux distribution of the supernova candidate associated with GRB 970228 by modeling the spectral flux distribution of the host galaxy of this burst, fitting this model to measurements of the host galaxy, and using the fitted model to better subtract out the contribution of the host galaxy to measurements of the afterglow of this burst. Furthermore, we discuss why the non-detection of a SN1998bw-like component to the afterglow of GRB 990510 does not necessarily imply that a SN is not associated with this burst. Finally, we discuss how bursts can be used as beacons to locate SNe out to redshifts of z = 4 - 5.
During the last ten years, observations of long-duration gamma-ray bursts brought to the conclusion that at least a fraction of them is associated with bright supernovae of type Ib/c. In this talk, after a short review on the previously observed GRB-SN connection cases, we present the recent case of GRB 100316/SN 2010bh. In particular, during the observational campaign of SN 2010bh, a pivotal role was played by VLT/X-shooter, sampling with unique high quality data the spectral energy distribution of the early evolution phases from the UV to the K band.
Long-duration gamma-ray bursts (GRBs) and Type Ib/c Supernovae (SNe Ib/c) are amongst natures most magnificent explosions. While GRBs launch relativistic jets, SNe Ib/c are core-collapse explosions whose progenitors have been stripped of their hydrogen and helium envelopes. Yet for over a decade, one of the key outstanding questions is which conditions lead to each kind of explosion and death in massive stars. Determining the fates of massive stars is not only a vibrant topic in itself, but also impacts using GRBs as star formation indicators over distances of up to 13 billion light-years and for mapping the chemical enrichment history of the universe. This article reviews a number of comprehensive observational studies that probe the progenitor environments, their metallicities and the explosion geometries of SN with and without GRBs, as well as the emerging field of SN environmental studies. Furthermore, it discusses SN 2008D/XRT 080109 that was discovered serendipitously with the Swift satellite via its X-ray emission from shock breakout, and that has generated great interest amongst both observers and theorists while illustrating a novel technique for stellar forensics. The article concludes with an outlook on how the most promising venues of research - with the existing and upcoming innovative large-scale surveys such as the Palomar Transient Factory and LSST - will shed new light on the diverse deaths of massive stars.
The association of Type Ic SNe with long-duration GRBs is well established. We endeavor, through accurate ground-based observational campaigns, to characterize these SNe at increasingly high redshifts. We obtained a series of optical photometric and spectroscopic observations of the Type Ic SN2012bz associated with the Swift long-duration GRB120422A (z=0.283) using the 3.6-m TNG and the 8.2-m VLT telescopes. The peak times of the light curves of SN2012bz in various optical filters differ, with the B-band and i-band light curves reaching maximum at ~9 and ~23 rest-frame days, respectively. The bolometric light curve has been derived from individual bands photometric measurements, but no correction for the unknown contribution in the near-infrared (probably around 10-15%) has been applied. Therefore, the present light curve should be considered as a lower limit to the actual UV-optical-IR bolometric light curve. This pseudo-bolometric curve reaches its maximum (Mbol = -18.56 +/- 0.06) at 13 +/- 1 rest-frame days; it is similar in shape and luminosity to the bolometric light curves of the SNe associated with z<0.2 GRBs and more luminous than those of SNe associated with XRFs. A comparison with the model generated for the bolometric light curve of SN2003dh suggests that SN2012bz produced only about 15% less 56Ni than SN2003dh, about 0.35 Msol. Similarly the VLT spectra of SN2012bz, after correction for Galactic extinction and for the contribution of the host galaxy, suggest comparable explosion parameters with those observed in SN2003dh (EK~3.5 x 10^52 erg, Mej~7 Msol) and a similar progenitor mass (~25-40 Msol). GRB120422A is consistent with the Epeak-Eiso and the EX,iso-Egamma,iso-E_peak relations. GRB120422A/SN2012bz shows the GRB-SN connection at the highest redshift so far accurately monitored both photometrically and spectroscopically.
We here report a spectroscopic monitor for the supernova SN,2017iuk associated with the long-duration low-luminosity gamma-ray burst GRB,171205A at a redshift of 0.037, which is up to now the third GRB-SN event away from us. Our spectroscopic observations and spectral analysis allow us to identify SN,2017iuk as a typical broad-line type Ic SN. A comparison study suggests that the type-IcBL SN,2017iuk resembles to SN,2006aj in following aspects: 1) similar spectra at the nearby epochs, 2) comparable evolution of the photospheric velocity obtained from the measurements based on both ion{Si}{2}$lambda$6355 line and spectral modeling, and 3) comparable explosion parameters. This analogy could imply a formation of a neutron star in the core-collapse of GRB,171205A/SN,2017iuk as previously suggested in GRB,060218/SN,2006aj. The properties of the host galaxy is discussed, which suggests that GRB,171205A/SN,2017iuk occurred in an early type (S0), high-mass, starforming galaxy with low specific SFR and solar metallicity.