We present a detailed analysis of the mass distribution in the rich and distant cluster of galaxies Cl0024+17. X-ray data come from both a deep ROSAT/HRI image of the field (Bohringer et al. 1999) and ASCA spectral data. Using a wide field CCD image of the cluster, we optically identify all the faint X-ray sources, whose counts are compatible with deep X-ray number counts. In addition we marginally detect the X-ray counter-part of the gravitational shear perturbation detected by Bonnet et al. (1994) at a 2.5 $sigma$ level. A careful spectral analysis of ASCA data is also presented. In particular, we extract a low resolution spectrum of the cluster free from the contamination by a nearby point source located 1.2 arcmin from the center. The X-ray temperature deduced from this analysis is $T_X = 5.7 ^{+4.9}_{-2.1}$ keV at the 90% confidence level. The comparison between the mass derived from a standard X-ray analysis and from other methods such as the Virial Theorem or the gravitational lensing effect lead to a mass discrepancy of a factor 1.5 to 3. We discuss all the possible sources of uncertainties in each method of mass determination and give some indications on the way to reduce them. A complementary study of optical data is in progress and may solve the X-ray/optical discrepancy through a better understanding of the dynamics of the cluster.