Do you want to publish a course? Click here

A Companion Galaxy to the Post-Starburst Quasar UN J1025-0040

58   0   0.0 ( 0 )
 Added by Gabriela Canalizo
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

UN J1025-0040 is a quasar at z = 0.6344 that shows an extremely bright post starburst population of age ~ 400 Myr (Brotherton et al. 1999). Images of UN J1025-0040 show a nearly stellar object 4.2 arcseconds SSW of the quasar. We present imaging and spectroscopy that confirm that this object is a companion galaxy at redshift z = 0.6341. We estimate an age of ~ 800 Myr for the dominant stellar population in the companion. The companion appears to be interacting with the quasar host galaxy, and this interaction may have triggered both the starburst and the quasar activity in UN J1025-0040.



rate research

Read More

We present new Hubble Space Telescope (HST) WFPC2 images of the post-starburst quasar UN J1025-0040, which contains both an active galactic nucleus (AGN) and a 400-Myr-old nuclear starburst of similar bolometric luminosity (10^{11.6} solar luminosities). The F450W and F814W images resolve the AGN from the starburst and show that the bulk of the star light (6 x 10^{10} solar masses) is contained within a central radius of about 600 parsecs, and lacks clear morphological structures at this scale. Equating the point-source light in each image with the AGN contribution, we determined the ratio of AGN-to-starburst light. This ratio is 69% in the red F814W image, consistent with our previous spectral analysis, but about 50% in the blue F450W image whereas we had predicted 76%. The HST images are consistent with previous photometry, ruling out variability (a fading AGN) as a cause for this result. We can explain the new data if there is a previously unknown young stellar population present, 40 Myr or younger, with as much as 10% of the mass of the dominant 400-Myr-old population. This younger starburst may represent the trigger for the current nuclear activity. The multiple starburst ages seen in UN J1025-0040 and its companion galaxy indicate a complex interaction and star-formation history.
We present the discovery of a z=0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad FeII (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explained by the emergence of a young quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. The age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.
We present results from a search for high-redshift J--band ``dropout galaxies in the portion of the GOODS southern field that is covered by extremely deep imaging from the Hubble Ultradeep Field (HUDF).Using observations at optical, near-infrared and mid-infrared wavelengths from the Hubble and Spitzer Space Telescopes and the ESO-VLT, we search for very massive galaxies at high redshifts and find one particularly remarkable candidate. Its spectral energy distribution is consistent with a galaxy at z ~ 6.5 and a stellar mass of 6x10e11 M(sun) (for a Salpeter IMF). We interpret a prominent photometric break between the near-infrared and Spitzer bandpasses as the 3646A Balmer discontinuity. The best-fitting models have low reddening and ages of several hundred Myr, placing the formation of the bulk of the stars at z > 9. Alternative models of dusty galaxies at z ~ 2.5 are possible but provide significantly poorer fits. The object is detected with Spitzer at 24 micron. This emission originats from an obscured active nucleus or star formation. We present optical and near-infrared spectroscopy which has, thus far, failed to detect any spectral features. This helps limit the solution in which the galaxy is a starburst or active galaxy at z ~ 2.5. If the high-redshift interpretation is correct, this object would be an example of a galaxy that formed by a process strongly resembling traditional models of monolithic collapse, in a way which a very large mass of stars formed within a remarkably short period of time, at very high redshift.
(abridged) There are good observational reasons to believe that the progenitors of red galaxies have undergone starbursts, followed by a post-starburst phase. We investigate the environments of post-starburst galaxies by measuring textsl{(1)} number densities in $8 h^{-1} mathrm{Mpc}$ radius comoving spheres, textsl{(2)} transverse distances to nearest Virgo-like galaxy clusters, and textsl{(3)} transverse distances to nearest luminous-galaxy neighbors. We compare the post-starburst galaxies to currently star-forming galaxies identified solely by A-star excess or $Halpha$ emission. We find that post-starburst galaxies are in the same kinds of environments as star-forming galaxies; this is our ``null hypothesis. More importantly, we find that at each value of the A-star excess, the star-forming and post-starburst galaxies lie in very similar distributions of environment. The only deviations from our null hypothesis are barely significant: a slight deficit of post-starburst galaxies (relative to the star-forming population) in very low-density regions, a small excess inside the virial radii of clusters, and a slight excess with nearby neighbors. None of these effects is strong enough to make the post-starburst galaxies a high-density phenomenon, or to argue that the starburst events are primarily triggered by external tidal impulses (e.g., from close passages of massive galaxies). The small excess inside cluster virial radii suggests that some post-starbursts are triggered by interactions with the intracluster medium, but this represents a very small fraction of all post-starburst galaxies.
We present the first result of a survey for strong galaxy-galaxy lenses in Sloan Digital Sky Survey (SDSS) images. SDSS J082728.70+223256.4 was selected as a lensing candidate using selection criteria based on the color and positions of objects in the SDSS photometric catalog. Follow-up imaging and spectroscopy showed this object to be a lensing system. The lensing galaxy is an elliptical at z = 0.349 in a galaxy cluster. The lensed galaxy has the spectrum of a post-starburst galaxy at z = 0.766. The lensing galaxy has an estimated mass of $sim 1.2 times 10^{12} M_{odot}$ and the corresponding mass to light ratio in the B-band is $sim 26 M_{odot}/L_{odot}$ inside 1.1 effective radii of the lensing galaxy. Our study shows how catalogs drawn from multi-band surveys can be used to find strong galaxy-galaxy lenses having multiple lens images. Our strong lensing candidate selection based on photometry-only catalogs will be useful in future multi-band imaging surveys such as SNAP and LSST.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا