Do you want to publish a course? Click here

The evolution of helium white dwarfs: II. Thermal instabilities

107   0   0.0 ( 0 )
 Added by Thomas Bloecker
 Publication date 1999
  fields Physics
and research's language is English
 Authors T. Driebe




Ask ChatGPT about the research

We calculated a grid of evolutionary models for white dwarfs with helium cores (He-WDs) and investigated the occurrence of hydrogen-shell flashes due to unstable hydrogen burning via CNO cycling. Our calculations show that such thermal instabilities are restricted to a certain mass range (M=0.21...0.30Msun), consistent with earlier studies. Models within this mass range undergo the more hydrogen shell flashes the less massive they are. This is caused by the strong dependence of the envelope mass on the white dwarf core mass. The maximum luminosities from hydrogen burning during the flashes are of the order of 10^5 Lsun. Because of the development of a pulse-driven convection zone whose upper boundary temporarily reaches the surface layers, the envelopes hydrogen content decreases by Delta(X)=0.06 per flash. Our study further shows that an additional high mass-loss episode during a flash-driven Roche lobe overflow to the white dwarfs companion does not affect the final cooling behaviour of the models. Independent of hydrogen shell flashes the evolution along the final white dwarf cooling branch is determined by hydrogen burning via pp-reactions down to effective temperatures as low as 8000 K.



rate research

Read More

We present a grid of evolutionary tracks for low-mass white dwarfs with helium cores in the mass range from 0.179 to 0.414 M_sun. The lower mass limit is well suited for comparison with white dwarf companions of millisecond pulsars (MSP). The derived cooling ages are of the order of 10^9 yrs due to residual nuclear burning. The cooling ages are consistent with age estimations of MSP systems based on the pulsars spin-down. For example, for the system PSR 1012+5307 we derived a white dwarf cooling age of 6 +/-1 Gyr in good agreement with the spin-down age of 7 Gyr. For the companion mass we found M=0.19 +/- 0.02 M_sun. We studied other MSP systems as well selecting only systems with well given ages and/or masses, and determined the effective temperatures and surface gravities of the companion white dwarfs with the present evolutionary models.
Previous investigations on hydrogen-rich white dwarfs generally yield only very small rotational velocities (v_rot sin i). We have analyzed line profiles in high-resolution optical spectra of eight hydrogen-deficient (pre-) white dwarfs and find deviations from the dominant Stark line broadening in five cases which, interpreted as an effect of stellar rotation, indicate projected rotational velocities of 40 - 70 km/sec. For the three least luminous stars upper limits of v_rot sin i = 15 - 25 km/sec could be derived only. The resulting velocities correlate with luminosity and mass. However, since the mass-loss rate is correlated to the luminosity of a star, the observed line profiles may be affected by a stellar wind as well. In the case of RX J2117.1+3412, this would solve discrepancies to results of pulsational modeling (v_rot sin i ~ 0).
We present a grid of evolutionary tracks for low-mass white dwarfs with helium cores in the mass range from 0.179 to 0.414 Msol. The lower mass limit is well-suited for comparison with white dwarf companions of millisecond pulsars. The tracks are based on a 1 Msol model sequence extending from the pre-main sequence stage up to the tip of the red-giant branch. Applying large mass loss rates at appropriate positions forced the models to move off the giant branch. The further evolution was then followed across the Hertzsprung-Russell diagram and down the cooling branch. At maximum effective temperature the envelope masses above the helium cores increase from 0.6 to 5.4 x 10^{-3} Msol for decreasing mass. We carefully checked for the occurrence of thermal instabilities of the hydrogen shell by adjusting the computational time steps accordingly. Hydrogen flashes have been found to take place only in the mass interval 0.21 < M/Msol < 0.3. The models show that hydrogen shell burning contributes significantly to the luminosity budget of white dwarfs with helium cores. For very low masses the hydrogen shell luminosity remains to be dominant even down to effective temperatures well below 10000K. Accordingly, the corresponding cooling ages are significantly larger than those gained from model calculations which neglect nuclear burning or the white dwarf progenitor evolution. Using the atmospheric parameters of the white dwarf in the PSR J1012+5307 system we determined a mass of M=0.19 +/- 0.02 Msol and a cooling age of 6 +/- 1 Gyr, in good agreement with the spin-down age, 7 Gyr, of the pulsar.
In this paper, we present corrections to the spectroscopic parameters of DB and DBA white dwarfs with -10.0 < log(H/He) < -2.0, 7.5 < log(g) < 9.0 and 12000 K < T_eff < 34000 K, based on 282 3D atmospheric models calculated with the CO5BOLD radiation-hydrodynamics code. These corrections arise due to a better physical treatment of convective energy transport in 3D models when compared to the previously available 1D model atmospheres. By applying the corrections to an existing SDSS sample of DB and DBA white dwarfs, we find significant corrections both for the effective temperature and surface gravity. The 3D log(g) corrections are most significant for T_eff < 18000 K, reaching up to -0.20 dex at log(g) = 8.0. However, in this low effective temperature range, the surface gravity determined from the spectroscopic technique can also be significantly affected by the treatment of the neutral van der Waals line broadening of helium and by non-ideal effects due to the perturbation of helium by neutral atoms. Thus, by removing uncertainties due to 1D convection, our work showcases the need for improved description of microphysics for DB and DBA model atmospheres. Overall, we find that our 3D spectroscopic parameters for the SDSS sample are generally in agreement with Gaia DR2 absolute fluxes within 1-3{sigma} for individual white dwarfs. By comparing our results to DA white dwarfs, we have determined that the precision and accuracy of DB/DBA atmospheric models are similar. For ease of user application of the correction functions, we provide an example Python code.
We present the first radiation magnetohydrodynamics simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-beta parameter, the thermal to magnetic pressure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1-50 kG, which is much smaller than the typical 1-1000 MG field strengths observed in magnetic white dwarfs, implying that these objects have radiative atmospheres. We have then employed evolutionary models to study the cooling process of high-field magnetic white dwarfs, where convection is entirely suppressed during the full evolution (B > 10 MG). We find that the inhibition of convection has no effect on cooling rates until the effective temperature (Teff) reaches a value of around 5500 K. In this regime, the standard convective sequences start to deviate from the ones without convection owing to the convective coupling between the outer layers and the degenerate reservoir of thermal energy. Since no magnetic white dwarfs are currently known at the low temperatures where this coupling significantly changes the evolution, effects of magnetism on cooling rates are not expected to be observed. This result contrasts with a recent suggestion that magnetic white dwarfs with Teff < 10,000 K cool significantly slower than non-magnetic degenerates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا