Do you want to publish a course? Click here

SN1994D in NGC4526: a normally bright type Ia supernova

48   0   0.0 ( 0 )
 Added by Georg Drenkhahn
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

SN1994D of type Ia has been suspected not to fit into the relation between decline rate, colour, and brightness. However, an individual distance of its host galaxy, NGC4526, other than that of the Virgo cluster, has not yet been published. We determined the distance by the method of globular cluster luminosity functions on the basis of HST archive data. A maximum-likelihood fit returns apparent turn-over magnitudes of 23.16+-0.16mag in V and 21.96+-0.09mag in I. The corresponding distance modulus is 30.4+-0.3mag, where the error reflects our estimation of the absolute distance scale. The absolute magnitudes (not corrected for decline rate and colour) are -18.67+-0.30mag, -18.62+-0.30mag, and -18.40+-0.30mag for B, V, and I, respectively. The corrected magnitudes are -18.69+-0.31mag, -18.69+-0.31mag, and -18.44+-0.31mag. Compared with other supernovae with reliably determined distances, SN1994D fits within the errors. It is therefore not a counter-example against a uniform decline-rate-colour-brightness relation.



rate research

Read More

We present photometric and spectroscopic observations of the nearby Type Ia SN 2019yvq, from its discovery $sim$1 day after explosion to $sim$100 days after its peak brightness. This SN exhibits several unusual features, most notably an extremely bright UV excess seen within $sim$5 days of its explosion. As seen in Swift UV data, this early excess outshines its peak brightness, making this object more extreme than other SNe with early UV/blue excesses (e.g. iPTF14atg and SN 2017cbv). In addition, it was underluminous ($M_B=-18.4$), relatively quickly declining ($Delta m_{15}(B)=1.35$), and shows red colors past its early blue bump. Unusual (although not unprecedented) spectral features include extremely broad-lined and high-velocity Si absorption. Despite obvious differences in peak spectra, we classify SN 2019yvq as a transitional member of the 02es-like subclass due to its similarities in several respects (e.g. color, peak luminosity, peak Ti, nebular [Ca II]). We model this dataset with a variety of published models, including SN ejecta - companion shock interaction and sub-Chandrasekhar mass WD double detonation models. Radio constraints from the VLA place an upper limit of $(4.5 - 20) times 10^{-8}$ M$_{odot}$/yr on the mass-loss rate from a symbiotic progenitor, which does not exclude a red giant or main sequence companion. Ultimately we find that no one model can accurately replicate all aspects of the dataset, and further we find that the ubiquity of early excesses in 02es-like SNe Ia requires a progenitor system that is capable of producing isotropic UV flux, ruling out some models for this class of objects.
We present a study of the peculiar Type Ia supernova 2001ay (SN 2001ay). The defining features of its peculiarity are: high velocity, broad lines, and a fast rising light curve, combined with the slowest known rate of decline. It is one magnitude dimmer than would be predicted from its observed value of Delta-m15, and shows broad spectral features. We base our analysis on detailed calculations for the explosion, light curves, and spectra. We demonstrate that consistency is key for both validating the models and probing the underlying physics. We show that this SN can be understood within the physics underlying the Delta-m15 relation, and in the framework of pulsating delayed detonation models originating from a Chandrasekhar mass, white dwarf, but with a progenitor core composed of 80% carbon. We suggest a possible scenario for stellar evolution which leads to such a progenitor. We show that the unusual light curve decline can be understood with the same physics as has been used to understand the Delta-m15 relation for normal SNe Ia. The decline relation can be explained by a combination of the temperature dependence of the opacity and excess or deficit of the peak luminosity, alpha, measured relative to the instantaneous rate of radiative decay energy generation. What differentiates SN 2001ay from normal SNe Ia is a higher explosion energy which leads to a shift of the Ni56 distribution towards higher velocity and alpha < 1. This result is responsible for the fast rise and slow decline. We define a class of SN 2001ay-like SNe Ia, which will show an anti-Phillips relation.
79 - F. K. Roepke 2006
We explore the evolution of thermonuclear supernova explosions when the progenitor white dwarf star ignites asymmetrically off-center. Several numerical simulations are carried out in two and three dimensions to test the consequences of different initial flame configurations such as spherical bubbles displaced from the center, more complex deformed configurations, and teardrop-shaped ignitions. The burning bubbles float towards the surface while releasing energy due to the nuclear reactions. If the energy release is too small to gravitationally unbind the star, the ash sweeps around it, once the burning bubble approaches the surface. Collisions in the fuel on the opposite side increase its temperature and density and may -- in some cases -- initiate a detonation wave which will then propagate inward burning the core of the star and leading to a strong explosion. However, for initial setups in two dimensions that seem realistic from pre-ignition evolution, as well as for all three-dimensional simulations the collimation of the surface material is found to be too weak to trigger a detonation.
We develop a new framework for use in exploring Type Ia Supernova (SN Ia) spectra. Combining Principal Component Analysis (PCA) and Partial Least Square analysis (PLS) we are able to establish correlations between the Principal Components (PCs) and spectroscopic/photometric SNe Ia features. The technique was applied to ~120 supernova and ~800 spectra from the Nearby Supernova Factory. The ability of PCA to group together SNe Ia with similar spectral features, already explored in previous studies, is greatly enhanced by two important modifications: (1) the initial data matrix is built using derivatives of spectra over the wavelength, which increases the weight of weak lines and discards extinction, and (2) we extract time evolution information through the use of entire spectral sequences concatenated in each line of the input data matrix. These allow us to define a stable PC parameter space which can be used to characterize synthetic SN Ia spectra by means of real SN features. Using PLS, we demonstrate that the information from important previously known spectral indicators (namely the pseudo-equivalent width (pEW) of Si II 5972 / Si II 6355 and the line velocity of S II 5640 / Si II 6355) at a given epoch, is contained within the PC space and can be determined through a linear combination of the most important PCs. We also show that the PC space encompasses photometric features like B or V magnitudes, B-V color and SALT2 parameters c and x1. The observed colors and magnitudes, that are heavily affected by extinction, cannot be reconstructed using this technique alone. All the above mentioned applications allowed us to construct a metric space for comparing synthetic SN Ia spectra with observations.
We present the optical (UBVRI) and ultraviolet (Swift-UVOT) photometry, and optical spectroscopy of Type Ia supernova SN 2017hpa. We study broadband UV+optical light curves and low resolution spectroscopy spanning from $-13.8$ to $+108$~d from the maximum light in $B$-band. The photometric analysis indicates that SN 2017hpa is a normal type Ia with $Delta m_{B}(15) = 0.98pm0.16$ mag and $M_{B}=-19.45pm0.15$ mag at a distance modulus of $mu = 34.08pm0.09$ mag. The $(uvw1-uvv)$ colour evolution shows that SN 2017hpa falls in the NUV-blue group. The $(B-V)$ colour at maximum is bluer in comparison to normal type Ia supernovae. Spectroscopic analysis shows that the Si II 6355 absorption feature evolves rapidly with a velocity gradient, $dot{v}=128pm 7$ km s$^{-1}$ d$^{-1}$. The pre-maximum phase spectra show prominent C II 6580 {AA} absorption feature. The C II 6580 {AA} line velocity measured from the observed spectra is lower than the velocity of Si II 6355 {AA}, which could be due to a line of sight effect. The synthetic spectral fits to the pre-maximum spectra using syn++ indicate the presence of a high velocity component in the Si II absorption, in addition to a photospheric component. Fitting the observed spectrum with the spectral synthesis code TARDIS, the mass of unburned C in the ejecta is estimated to be $sim 0.019$~$M_{odot}$. The peak bolometric luminosity is $L^{bol}_{peak} = 1.43times10^{43}$ erg s$^{-1}$. The radiation diffusion model fit to the bolometric light curve indicates $0.61pm0.02$ $M_odot$ of $^{56}$Ni is synthesized in the explosion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا