Do you want to publish a course? Click here

Polarized Narrow-Line Emission from the Nucleus of NGC 4258

49   0   0.0 ( 0 )
 Added by A. J. Barth
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

The detection of polarized continuum and line emission from the nucleus of NGC 4258 by Wilkes et al. (1995) provides an intriguing application of the unified model of Seyfert nuclei to a galaxy in which there is known to be an edge-on, rotating disk of molecular gas surrounding the nucleus. Unlike most Seyfert nuclei, however, NGC 4258 has strongly polarized narrow emission lines. To further investigate the origin of the polarized emission, we have obtained spectropolarimetric observations of the NGC 4258 nucleus at the Keck-II telescope. The narrow-line polarizations range from 1.0% for [S II] 6716 to 13.9% for the [O II] 7319,7331 blend, and the position angle of polarization is oriented nearly parallel to the projected plane of the masing disk. A correlation between critical density and degree of polarization is detected for the forbidden lines, indicating that the polarized emission arises from relatively dense (n_e > 10^4 cm^-3) gas. An archival Hubble Space Telescope narrow-band [O III] image shows that the narrow-line region has a compact, nearly unresolved core, implying a FWHM size of <2.5 pc. We discuss the possibility that the polarized emission might arise from the accretion disk itself and become polarized by scattering within the disk atmosphere. A more likely scenario is an obscuring torus or strongly warped disk surrounding the inner portion of a narrow-line region which is strongly stratified in density. The compact size of the narrow-line region implies that the obscuring structure must be smaller than ~2.5 pc in diameter.



rate research

Read More

The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum emission at the galactic center. Quasi-simultaneous multi-frequency observations using the Very Large Array (VLA) from 5 GHz (6 cm) to 22 GHz (1.3 cm) showed inverted spectra in all epochs, which were intra-month variable, as well as complicated spectral features that cannot be represented by a simple power law, indicating multiple blobs in nuclear jets. Using the Nobeyama Millimeter Array (NMA), we discovered a large amplitude variable emission at 100 GHz (3 mm), which had higher flux densities at most epochs than those of the VLA observations. A James Clerk Maxwell Telescope (JCMT) observation at 347 GHz (850 micron) served an upper limit of dust contamination. The inverted radio spectrum of the nucleus NGC 4258 is suggestive of an analogy to our Galactic center Sgr A*, but with three orders of magnitude higher radio luminosity. In addition to the LLAGN M 81, we discuss the nucleus of NGC 4258 as another up-scaled version of Sgr A*.
114 - Brent Groves MPA 2006
We present models for the mid- and far- infrared emission from the Narrow Line Region (NLR) of Active Galactic Nuclei (AGN). Using the MAPPINGS III code we explore the effect of typical NLR parameters on the spectral characteristics of the IR emission. These include useful IR emission line ratio diagnostic diagrams for the determination of these parameters, as well as Star formation--AGN mixing diagnostics. We also examine emission line to continuum correlations which would assist in separating the IR emission arising from the NLR from that coming from the inner torus. We find for AGN like NGC 1068 and NGC 4151 that the NLR only contributes ~10% to the total IRAS 25 mum flux, and that other components such as a dusty torus are necessary to explain the total AGN IR emission.
The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 100 GHz and archival data from the Very Large Array (VLA) at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz (a spectral index of ~0.3) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds (bulk Lorentz factors of >~ 3) of jet and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.
The narrow [O III] 4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow line-emitting region has a radius of only 1-3 pc and is denser (n ~ 10^5 cm^{-3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass.Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hbeta emission-line light curves for the period 1988 to 2008.
407 - C. Henkel 2002
Water vapor emission at 22 GHz is reported from the nucleus of the LINER galaxy Mrk 1419 (NGC 2960). Single-dish spectra of the maser source show properties that are similar to those seen in NGC 4258, namely (1) a cluster of systemic H2O features, (2) two additional H2O clusters, one red- and one blue-shifted by about 475 km/s, (3) a likely acceleration of the systemic features, and (4) no detectable velocity drifts in the red- and blue-shifted features. Interpreting the data in terms of the paradigm established for NGC 4258, i.e. assuming the presence of an edge-on Keplerian circumnuclear annulus with the systemic emission arising from the near side of its inner edge, the following parameters are derived: Rotational velocity: 330-600 km/s; radius: 0.13-0.43 pc; binding mass: about 10 million solar masses. With the galaxy being approximately ten times farther away than NGC 4258, a comparison of linear and angular scales (the latter via Very Long Baseline Interferometry) may provide an accurate geometric distance to Mrk 1419 that could be used to calibrate the cosmic distance scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا