Do you want to publish a course? Click here

HII Shells Surrounding Wolf-Rayet stars in M31

79   0   0.0 ( 0 )
 Added by Mark A. Bransford
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of an ongoing investigation to provide a detailed view of the processes by which massive stars shape the surrounding interstellar medium (ISM), from pc to kpc scales. In this paper we have focused on studying the environments of Wolf-Rayet (WR) stars in M31 to find evidence for WR wind-ISM interactions, through imaging ionized hydrogen nebulae surrounding these stars. We have conducted a systematic survey for HII shells surrounding 48 of the 49 known WR stars in M31. There are 17 WR stars surrounded by single shells, or shell fragments, 7 stars surrounded by concentric limb brightened shells, 20 stars where there is no clear physical association of the star with nearby H-alpha emission, and 4 stars which lack nearby H-alpha emission. For the 17+7 shells above, there are 12 which contain one or two massive stars (including a WR star) and that are <=40 pc in radius. These 12 shells may be classical WR ejecta or wind-blown shells. Further, there may be excess H-alpha point source emission associated with one of the 12 WR stars surrounded by putative ejecta or wind-blown shells. There is also evidence for excess point source emission associated with 11 other WR stars. The excess emission may arise from unresolved circumstellar shells, or within the extended outer envelopes of the stars themselves. In a few cases we find clear morphological evidence for WR shells interacting with each other. In several H-alpha images we see WR winds disrupting, or punching through, the walls of limb-brightened HII shells.



rate research

Read More

We investigate the influence of Wolf-Rayet (W-R) stars on their surrounding star-forming molecular clouds. We study five regions containing W-R stars in the inner Galactic plane ($lsim$[14$^circ$-52$^circ$]), using multi-wavelength data from near-infrared to radio wavelengths. Analysis of $^{13}$CO line data reveals that these W-R stars have developed gas-deficient cavities in addition to molecular shells with expansion velocities of a few km s$^{-1}$. The pressure owing to stellar winds primarily drives these expanding shells and sweeps up the surrounding matter to distances of a few pc. The column densities of shells are enhanced by a minimum of 14% for one region to a maximum of 88% for another region with respect to the column densities within their central cavities. No active star formation - including molecular condensations, protostars, or ionized gas - is found inside the cavities, whereas such features are observed around the molecular shells. Although the expansion of ionized gas is considered an effective mechanism to trigger star formation, the dynamical ages of the HII regions in our sample are generally not sufficiently long to do so efficiently. Overall, our results hint at the possible importance of negative W-R wind-driven feedback on the gas-deficient cavities, where star formation is quenched as a consequence. In addition, the presence of active star formation around the molecular shells indicates that W-R stars may also assist in accumulating molecular gas, and that they could initiate star formation around those shells.
Wolf-Rayet (WR) HII galaxies are local metal-poor star-forming galaxies, observed when the most massive stars are evolving from O stars to WR stars, making them template systems to study distant starbursts. We have been performing a program to investigate the interplay between massive stars and gas in WR HII galaxies using IFS. Here, we highlight some results from the first 3D spectroscopic study of Mrk 178, the closest metal-poor WR HII galaxy, focusing on the origin of the nebular HeII emission and the aperture effects on the detection of WR features.
We present optical spectra of 14 emission-line stars in M33s giant HII regions NGC 592, NGC 595 and NGC 604: five of them are known WR stars, for which we present a better quality spectrogram, eight were WR candidates based on narrow-band imagery and one is a serendipitous discovery. Spectroscopy confirms the power of interference filter imagery to detect emission-line stars down to an equivalent width of about 5 A in crowded fields. We have also used archival HST/WFPC2 images to correctly identify emission-line stars in NGC 592 and NGC 588. emission-line stars in NGC 592 and NGC 588.
66 - G. Meynet 2000
Meynet and Arnould (1993) have suggested that Wolf-Rayet (WR) stars could significantly contaminate the Galaxy with 19F. In their scenario, 19F is synthesized at the beginning of the He-burning phase from the 14N left over by the previous CNO-burning core, and is ejected in the interstellar medium when the star enters its WC phase. Recourse to CNO seeds makes the 19F yields metallicity-dependent. These yields are calculated on grounds of detailed stellar evolutionary sequences for an extended range of initial masses (from 25 to 120 Msol) and metallicities (Z = 0.008, 0.02 and 0.04). The adopted mass loss rate prescription enables to account for the observed variations of WR populations in different environments. The 19F abundance in the WR winds of 60 Msol model stars is found to be about 10 to 70 times higher than its initial value, depending on the metallicity. This prediction is used in conjunction with a very simple model for the chemical evolution of the Galaxy to predict that WR stars could be significant (dominant?) contributors to the solar system fluorine content. We also briefly discuss the implications of our model on the possible detection of fluorine at high redshift.
Radioisotopes are natural clocks which can be used to estimate the age of the solar system. They also influence the shape of supernova light curves. In addition, the diffuse emission at 1.8 MeV from the decay of 26Al may provide a measure of the present day nucleosynthetic activity in the Galaxy. Therefore, even if radionuclides represent only a tiny fraction of the cosmic matter, they carry a unique piece of information. A large number of radioisotopes are produced by massive stars at the time of their supernova explosion. A more or less substantial fraction of them are also synthesized during the previous hydrostatic burning phases. These nuclides are then ejected either at the time of the supernova event, or through stellar winds during their hydrostatic burning phases. This paper focusses of the non explosive ejection of radionuclides by non-rotating or rotating Wolf-Rayet stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا