Do you want to publish a course? Click here

Seeking the Local Convergence Depth. V. Tully-Fisher Peculiar Velocities for 52 Abell Clusters

52   0   0.0 ( 0 )
 Added by ul
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have obtained I band Tully-Fisher (TF) measurements for 522 late-type galaxies in the fields of 52 rich Abell clusters distributed throughout the sky between 50 and 200h Mpc. Here we estimate corrections to the data for various forms of observational bias, most notably Malmquist and cluster population incompleteness bias. The bias-corrected data are applied to the construction of an I band TF template, resulting in a relation with a dispersion of 0.38 magnitudes and a kinematical zero-point accurate to 0.02 magnitudes. This represents the most accurate TF template relation currently available. Individual cluster TF relations are referred to the average template relation to compute cluster peculiar motions. The line-of-sight dispersion in the peculiar motions is 341+/-93 km/s, in general agreement with that found for the cluster sample of Giovanelli and coworkers.



rate research

Read More

46 - Daniel A. Dale 1999
We present Tully-Fisher observations for 35 rich Abell clusters of galaxies. Results from I band photometry and optical rotation curve work comprise the bulk of this paper. This is the third such data installment of an all-sky survey of 52 clusters in the distance range 50 to 200h Mpc. The complete data set provides the basis for determining an accurate Tully-Fisher template relation and for estimating the amplitude and direction of the local bulk flow on a 100h Mpc scale.
47 - Daniel A. Dale 1998
We have obtained new Tully-Fisher (TF) peculiar velocity measurements for 52 Abell galaxy clusters distributed throughout the sky between ~ 50 and 200 Mpc/h.The measurements are based on I band photometry and optical rotation curves for a sample of 522 spiral galaxies, from which an accurate TF template relation has been constructed. Individual cluster TF relations are referred to the template to compute cluster peculiar motions. The reflex motion of the Local Group of galaxies is measured with respect to the reference frame defined by our cluster sample and the distant portion of the Giovanelli et al. (1998) cluster set. We find the Local Group motion in this frame to be 565+/-113 km/s in the direction (l,b)=(267,26)+/-10 when peculiar velocities are weighted according to their errors. After optimizing the dipole calculation to sample equal volumes equally, the vector is 509+/-195 km/s towards (255,33)+/-22. Both solutions agree, to within 1-sigma or better, with the Local Group motion as inferred from the cosmic microwave background (CMB) dipole. Thus, the cluster sample as a whole moves slowly in the CMB reference frame, its bulk flow being at most 200 km/s.
58 - Daniel A. Dale 1997
We present first results of an all-sky observing program designed to improve the quality of the I band Tully-Fisher (TF) template and to obtain the reflex motion of the Local Group with respect to clusters to z = 0.06. We are obtaining between 5 and 15 TF measurements per cluster on a sample of 50 clusters at intermediate redshifts (0.02 < z < 0.06). Presentation of the data for seven Abell clusters of galaxies is given here. This data incorporates methods for estimating the true inclination of a spiral disk, an observational parameter undervalued for small angular-sized galaxies or for galaxies observed in poor seeing conditions.
We present the SFI++ dataset, a homogeneously derived catalog of photometric and rotational properties and the Tully-Fisher distances and peculiar velocities derived from them. We make use of digital optical images, optical long-slit spectra, and global HI line profiles to extract parameters of relevance to disk scaling relations, incorporating several previously published datasets as well as a new photometric sample of some 2000 objects. According to the completeness of available redshift samples over the sky area, we exploit both a modified percolation algorithm and the Voronoi-Delaunay method to assign individual galaxies to groups as well as clusters, thereby reducing scatter introduced by local orbital motions. We also provide corrections to the peculiar velocities for both homogeneous and inhomogeneous Malmquist bias, making use of the 2MASS Redshift Survey density field to approximate large scale structure. We summarize the sample selection criteria, corrections made to raw observational parameters, the grouping techniques, and our procedure for deriving peculiar velocities. The final SFI++ peculiar velocity catalog of 4861 field and cluster galaxies is large enough to permit the study not just of the global statistics of large scale flows but also of the {it details} of the local velocity field.
151 - R. Reyes 2011
In this paper, we derive scaling relations between photometric observable quantities and disk galaxy rotation velocity V_rot, or Tully-Fisher relations (TFRs). Our methodology is dictated by our purpose of obtaining purely photometric, minimal-scatter estimators of V_rot applicable to large galaxy samples from imaging surveys. To achieve this goal, we have constructed a sample of 189 disk galaxies at redshifts z<0.1 with long-slit H-alpha spectroscopy from Pizagno et al. (2007) and new observations. By construction, this sample is a fair subsample of a large, well-defined parent disk sample of ~170 000 galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). The optimal photometric estimator of V_rot we find is stellar mass M_* from Bell et al. (2003), based on the linear combination of a luminosity and a colour. Assuming a Kroupa IMF, we find: log [V_{80}/(km s^-1)] = (2.142 +/- 0.004)+(0.278 +/- 0.010)[log (M_*/M_sun)-10.10], where V_{80} is the rotation velocity measured at the radius R_{80} containing 80 per cent of the i-band galaxy light. This relation has an intrinsic Gaussian scatter of 0.036 +/- 0.005 dex and a measured scatter of 0.056 dex in log V_{80}. For a fixed IMF, we find that the dynamical-to-stellar mass ratios within R_{80}, (M_dyn/M_*)(R_{80}), decrease from approximately 10 to 3, as stellar mass increases from M_* ~ 10^9 to 10^{11} M_sun. At a fixed stellar mass, (M_dyn/M_*)(R_{80}) increases with disk size, so that it correlates more tightly with stellar surface density than with stellar mass or disk size alone. In future work, we will use these results to study disk galaxy formation and evolution, and perform a fair, statistical analysis of the dynamics and masses of a photometrically-selected sample of disk galaxies. [Abridged]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا