The Submillimeter Search for Very High Redshift Galaxies


Abstract in English

Identifying the optical/near-infrared (NIR) counterparts to the distant submillimeter (submm) source population has proved difficult due to poor submm spatial resolution. However, the proportionality of both centimeter and submm data to the star formation rate suggests that high resolution radio continuum maps with subarcsecond positional accuracy could be exploited to locate submm sources. We targeted with SCUBA a sample of micro-Jy radio sources in the flanking fields of the Hubble Deep Field selected from the uniform (8 micro-Jy at 1-sigma) 1.4 GHz VLA image of Richards (1999). We find that the majority of bright (>6 mJy) submm sources have detectable radio counterparts. With the precise positions from the radio, we also find that these submm sources are extremely faint in the optical and NIR (I>>24 and K=21-22) and are therefore inaccessible to optical spectroscopy. Redshift estimates can, however, be made from the shape of the spectral energy distribution in the radio and submm. This procedure, which we refer to as millimetric redshift estimation, places the bright submm population at z=1-3, where it forms the high redshift tail of the faint radio population.

Download