Do you want to publish a course? Click here

Partially ionized hydrogen plasma in strong magnetic fields

63   0   0.0 ( 0 )
 Added by Alexander Potekhin
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the thermodynamic properties of a partially ionized hydrogen plasma in strong magnetic fields, B ~ 10^{12}-10^{13} G, typical of neutron stars. The properties of the plasma depend significantly on the quantum-mechanical sizes and binding energies of the atoms, which are strongly modified by thermal motion across the field. We use new fitting formulas for the atomic binding energies and sizes, based on accurate numerical calculations and valid for any state of motion of the atom. In particular, we take into account decentered atomic states, neglected in previous studies of thermodynamics of magnetized plasmas. We also employ analytic fits for the thermodynamic functions of nonideal fully ionized electron-ion Coulomb plasmas. This enables us to construct an analytic model of the free energy. An ionization equilibrium equation is derived, taking into account the strong magnetic field effects and the nonideality effects. This equation is solved by an iteration technique. Ionization degrees, occupancies, and the equation of state are calculated.



rate research

Read More

In many astrophysical environments the plasma is only partially ionized, and therefore the interaction of charged and neutral particles may alter both the triggering of reconnection and its subsequent dynamical evolution. We derive the tearing mode maximum growth rate for partially ionized plasmas in the cases of weak and strong coupling between the plasma and the neutrals. In addition, critical scalings for current sheet aspect ratios are presented in terms of Lundquist number and ion-neutral collision frequencies. In the decoupled regime the standard tearing mode is recovered with a small correction depending on the ion-neutral collision frequency; in the intermediate regime collisions with neutrals are shown to stabilize current sheets, resulting in larger critical aspect ratios for ideal tearing to occur. Nonetheless, the additional electron-neutral collisions, hidden in the definition of the Lundquist number, can shrink the critical aspect ratios below the fully ionized case. In the coupled regime, the growth rate depends on the density ratio between ions and neutrals through the collision frequency between these two species. These provide critical aspect ratios for which the tearing mode instability transitions from slow to ideal, that depend on the neutral-ion density ratio.
110 - Siyao Xu , Alex Lazarian 2021
Small-scale turbulent dynamo is responsible for the amplification of magnetic fields on scales smaller than the driving scale of turbulence in diverse astrophysical media. Most earlier dynamo theories concern the kinematic regime and small-scale magnetic field amplification. Here we review our recent progress in developing the theories for the nonlinear dynamo and the dynamo regime in a partially ionized plasma. The importance of reconnection diffusion of magnetic fields is identified for both the nonlinear dynamo and magnetic field amplification during gravitational contraction. For the dynamo in a partially ionized plasma, the coupling state between neutrals and ions and the ion-neutral collisional damping can significantly affect the dynamo behavior and the resulting magnetic field structure. We present both our analytical predictions and numerical tests with a two-fluid dynamo simulation on the dynamo features in this regime. In addition, to illustrate the astrophysical implications, we discuss several examples for the applications of the dynamo theory to studying magnetic field evolution in both preshock and postshock regions of supernova remnants, in weakly magnetized molecular clouds, during the (primordial) star formation, and during the first galaxy formation.
The temperature dependence of rates of electron impact ionization and two electrons recombination are calculated using Wannier cross section of electron impact ionization of neutral hydrogen atom. Entropy production and power dissipation are derived for the case when the ionization degree deviates from its equilibrium value. This is the special case of the obtained general formula for entropy production accompanying chemical reactions. Damping rate of the sound waves is calculated and the conditions when ionization processes dominate are considered. A quasi-classical approximation for the heating mechanism of solar chromosphere is proposed. Several analogous phenomena for damping rates in liquids and crystals are shortly discussed, for example, deaf sound of a glass of beer or English salt solution. An explicit expression for the second or bulk (or volume) viscosity of hydrogen plasma is calculated from firsts principles. For the first time some second viscosity is calculated from first principles.
The interaction of partially ionized plasmas with an electromagnetic field is investigated using quantum statistical methods. A general statistical expression for the current density of a plasma in an electromagnetic field is presented and considered in the high field regime. Expressions for the collisional absorption are derived and discussed. Further, partially ionized plasmas are considered. Plasma Bloch equations for the description of bound-free transitions are given and the absorption coefficient as well as rate coefficients for multiphoton ionization are derived and numerical results are presented.
Magnetic reconnection has been intensively studied in fully ionized plasmas. However, plasmas are often partially ionized in astrophysical environments. The interactions between the neutral particles and ionized plasmas might strongly affect the reconnection mechanisms. We review magnetic reconnection in partially ionized plasmas in different environments from theoretical, numerical, observational and experimental points of view. We focus on mechanisms which make magnetic reconnection fast enough to compare with observations, especially on the reconnection events in the low solar atmosphere. The heating mechanisms and the related observational evidence of the reconnection process in the partially ionized low solar atmosphere are also discussed. We describe magnetic reconnection in weakly ionized astrophysical environments, including the interstellar medium and protostellar disks. We present recent achievements about fast reconnection in laboratory experiments for partially ionized plasmas.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا