The Milagrito water Cherenkov detector in the Jemez Mountains near Los Alamos, New Mexico took data from February 1997 to April 1998. Milagrito served as a prototype for the larger Milagro detector, which has just begun operations. Milagrito was the first large-aperture gamma-ray detector with sensitivity to gamma rays below 1 TeV. We report here on a search for steady emission from point sources over most of the northern sky using data from Milagrito.
We present a catalog of radio-loud candidate gamma-ray emitting blazars with WISE mid-infrared colors similar to the colors of confirmed gamma-ray blazars. The catalog is assembled from WISE sources detected in all four WISE filters, with colors compatible with the three-dimensional locus of the WISE gamma-ray emitting blazars, and which can be spatially cross-matched with radio sources from either one of the three radio surveys: NVSS, FIRST and/or SUMSS. Our initial WISE selection uses a slightly modified version of previously successful algorithms. We then select only the radio-loud sources using a measure of the radio-to-IR flux, the q22 parameter, which is analogous to the q24 parameter known in the literature but which instead uses the WISE band-four flux at 22 micron. Our final catalog contains 7855 sources classified as BL Lacs, FSRQs or mixed candidate blazars; 1295 of these sources can be spatially re-associated with confirmed blazars. We describe the properties of the final catalog of WISE blazar-like radio-loud sources and consider possible contaminants. Finally, we discuss why this large catalog of candidate gamma-ray emitting blazars represents a new and useful resource to address the problem of finding low energy counterparts to currently unidentified high-energy sources.
We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-year search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCubes four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.
A new ground-based wide-field extensive air shower array known as the High-Altitude Water Cherenkov (HAWC) Observatory promises a new window to monitoring the $sim$100 GeV gamma-ray sky with the potential for detecting a high energy spectral cutoff in gamma-ray bursts (GRBs). It represents a roughly 15 times sensitivity gain over the previous generation of wide-field gamma-ray air shower instruments and is able to detect the Crab Nebula at high significance ($>$5 $sigma$) with each daily transit. Its wide field-of-view ($sim$2 sr) and $>$95% uptime make it an ideal instrument for detecting GRB emission at $sim$100 GeV with an expectation for observing $sim$1 GRB per year based on existing measurements of GRB emission. An all-sky, self-triggered search for VHE emission produced by GRBs with HAWC has been developed. We present the results of this search on three characteristic GRB emission timescales, 0.2 seconds, 1 second, and 10 seconds, in the first year of the fully-populated HAWC detector which is the most sensitive dataset to date. No significant detections were found, allowing us to place upper limits on the rate of GRBs containing appreciable emission in the $sim$100 GeV band. These constraints exclude previously unexamined parameter space.
It is generally believed that pulsars dissipate their rotational energy through powerful winds of relativistic particles. Confinement of these winds leads to the formation of luminous pulsar wind nebulae (PWNe) seen across the electromagnetic spectrum in synchrotron and inverse Compton emission. Recently, many new detections have been produced at the highest energies by Very High Energy (VHE) gamma-ray observations identifying PWNe as among the most common sources of galactic VHE gamma -ray emission. We report here on the preliminary results of a search for VHE gamma-ray emission towards a selection of energetic and/or close pulsars in the Norther hemisphere in the first years of operations of the full VERITAS array.
Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Bootes 1, and Willman 1 conducted by VERITAS. These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of ~20 hours. The 95% confidence upper limits on the integral gamma-ray flux are in the range 0.4-2.2x10^-12 photons cm^-2s^-1. We interpret this limiting flux in the context of pair annihilation of weakly interacting massive particles and derive constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the WIMPs. The limits are obtained under conservative assumptions regarding the dark matter distribution in dwarf galaxies and are approximately three orders of magnitude above the generic theoretical prediction for WIMPs in the minimal supersymmetric standard model framework. However significant uncertainty exists in the dark matter distribution as well as the neutralino cross sections which under favorable assumptions could further lower the limits.