Hubble Space Telescope Near-infrared and Optical Imaging of Faint Radio Sources in the Distant Cluster Cl0939+4713


Abstract in English

We present deep Hubble Space Telescope NICMOS near-infrared and WFPC2 optical imaging of a small region in the core of the distant rich cluster Cl0939+4713 (z=0.41). We compare the optical and near-infrared morphologies of cluster members and find apparent small-scale optical structures within the galaxies which are absent in the near-infrared. We conclude that strong dust obscuration is a common feature in the late-type galaxies in distant clusters. We then concentrate on a sample of ten faint radio galaxies lying within our NICMOS field and selected from a very deep 1.4-GHz VLA map of the cluster with a 1sigma flux limit of 9uJy. Using published data we focus on the spectral properties of the eight radio-selected cluster members and show that these comprise a large fraction of the post-starburst population in the cluster. The simplest interpretation of the radio emission from these galaxies is that they are currently forming massive stars, contradicting their classification as post-starburst systems based on the optical spectra. We suggest that this star formation is hidden from view in the optical by the same obscuring dust which is apparent in our comparison on the optical and near-infrared morphologies of these galaxies. We caution that even in the restframe optical the effects of dust cannot be ignored when comparing samples of distant galaxies to low-redshift systems, particularly if dust is as prevelant in distant galaxies as appears to be the case in our study.

Download