Do you want to publish a course? Click here

Seyfert 1 mutation of the classical Seyfert 2 nucleus NGC 7582

65   0   0.0 ( 0 )
 Added by Itziar Aretxaga
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the transition towards a type 1 Seyfert experienced by the classical type 2 Seyfert nucleus in NGC 7582. The transition, found at most 20 days from its maximum peak, presents a unique opportunity to study these rare events in detail. At maximum the Ha line width is of about 12000 km/s. We examine three scenarios that could potentially explain the transition: capture of a star by a supermassive black hole, a reddening change in the surrounding torus, and the radiative onset of a type IIn supernova exploding in a compact nuclear/circumnuclear starburst.



rate research

Read More

63 - G.Malaguti , L.Bassani , M.Cappi 1999
The Seyfert 2 galaxy NGC 2110 has been observed with BeppoSAX between 0.5 and 150 keV. The high energy instrument onboard, PDS, has succeeded in measuring for the first time the spectrum of this source in the 13-150 keV range. The PDS spectrum, having a photon index Gamma~1.86 is fully compatible with that expected from a Seyfert 1 nucleus. In the framework of unified models, the harder (Gamma~1.67) 2-10 keV spectrum is well explained assuming the presence of a complex partial + total absorber (Nh~30x10^22 cm^-2 x25% + Nh~4x10^22 cm^-2 x100%). The high column density of this complex absorber is consistent both with the FeK_alpha line strength and with the detection of an absorption edge at E~7.1 keV in the power-law spectrum.
95 - S.-J. Xue , C. Otani , T. Mihara 1998
ASCA observations of the Seyfert 2 galaxy NGC 7582 revealed it was highly variable on the timescale of $sim2times10^4$ s in the hard X-ray (2-10 keV) band, while the soft X-ray (0.5-2 keV) flux remained constant during the observations. The spectral analysis suggests that this object is seen through an obscuring torus with the thickness of N$_{rm H}sim1.0times 10^{23}rm cm^{-2}$. The hard X-ray is an absorbed direct continuum from a hidden Seyfert 1 nucleus; the soft X-ray is dominated by the scattered central continuum from an extended spatial region. Thus we have an obscured/absorbed and a scattered view of this source as expected from the unification model for Seyfert galaxies. More interestingly, the inferred X-ray column was observed to increase by $sim4times10^{22} rm cm^{-2}$ from 1994 to 1996, suggesting a ``patchy torus structure, namely the torus might be composed of many individual clouds. The observed iron line feature near 6.4 keV with the equivalent width of 170 eV is also consistent with the picture of the transmission of nuclear X-ray continuum through a non-uniform torus.
275 - F. Combes 2014
We report ALMA observations of CO(3-2) emission in the Seyfert 1 galaxy NGC 1566, at a spatial resolution of 25 pc. Our aim is to investigate the morphology and dynamics of the gas inside the central kpc, and to probe nuclear fueling and feedback phenomena. NGC 1566 has a nuclear bar of 1.7 kpc radius and a conspicuous grand design spiral starting from this radius. The ALMA field of view, of diameter 0.9 kpc, lies well inside the nuclear bar and reveals a molecular trailing spiral structure from 50 to 300~pc in size, which is contributing to fuel the nucleus, according to its negative gravity torques. The spiral starts with a large pitch angle from the center and then winds up in a pseudo-ring at the inner Lindblad resonance (ILR) of the nuclear bar. This is the first time that a trailing spiral structure is clearly seen driving the gas inwards inside the ILR ring of the nuclear bar. This phenomenon shows that the massive central black hole has a significant dynamical influence on the gas, triggering its fueling. The gaseous spiral is well correlated with the dusty spiral seen through extinction in HST images, and also with a spiral feature emitting 0.87mm continuum. This continuum emission must come essentially from cold dust heated by the interstellar radiation field. The HCN(4-3) and HCO+(4-3) lines were simultaneously mapped and detected in the nuclear spiral. The HCO+(4-3) line is 3 times stronger than the HCN(4-3), as expected when star formation excitation dominates over active galactic nucleus (AGN) heating. The CO(3-2)/HCO+(4-3) integrated intensity ratio is sim 100. The molecular gas is in remarkably regular rotation, with only slight non-circular motions at the periphery of the nuclear spiral arms. These perturbations are quite small, and no outflow nor AGN feedback is detected.
125 - Xinwen Shu 2012
We present the result of the Chandra high-resolution observation of the Seyfert~2 galaxy NGC 7590. This object was reported to show no X-ray absorption in the low-spatial resolution ASCA data. The XMM observations show that the X-ray emission of NGC 7590 is dominated by an off-nuclear ultra-luminous X-ray source (ULX) and an extended emission from the host galaxy, and the nucleus is rather weak, likely hosting a Compton-thick AGN. Our recent Chandra observation of NGC 7590 enables to remove the X-ray contamination from the ULX and the extended component effectively. The nuclear source remains undetected at ~4x10^{-15} erg/s/cm^-2 flux level. Although not detected, Chandra data gives a 2--10 keV flux upper limit of ~6.1x10^{-15} erg/s/cm^-2 (at 3 sigma level), a factor of 3 less than the XMM value, strongly supporting the Compton-thick nature of the nucleus. In addition, we detected five off-nuclear X-ray point sources within the galaxy D25 ellipse, all with 2 -- 10 keV luminosity above 2x10^{38} erg/s (assuming the distance of NGC 7590). Particularly, the ULX previously identified by ROSAT data was resolved by Chandra into two distinct X-ray sources. Our analysis highlights the importance of high spatial resolution images in discovering and studying ULXs.
We present the discovery of a triplet of emission-line nuclei in the disturbed disk galaxy NGC 3341, based on archival data from the Sloan Digital Sky Survey and new observations from the Keck Observatory. This galaxy contains two offset nuclei within or projected against its disk, at projected distances of 5.1 and 8.4 kpc from its primary nucleus and at radial velocity separation of less than 200 km/s from the primary. These appear to be either dwarf ellipticals or the bulges of low-mass spirals whose disks have already been stripped off while merging into the primary galaxy. The inner offset nucleus has a Seyfert 2 spectrum and a stellar velocity dispersion of 70+/-7 km/s. The outer offset nucleus has very weak emission lines consistent with a LINER classification, and the primary nucleus has an emission-line spectrum close to the boundary between LINER/HII composite systems and HII nuclei; both may contain accreting massive black holes, but the optical classifications alone are ambiguous. The detection of an offset active nucleus in NGC 3341 provides a strong suggestion that black hole accretion episodes during minor mergers can be triggered in the nuclei of dwarf secondary galaxies as well as in the primary.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا