No Arabic abstract
The Wavelength-Oriented Microwave Background Analysis Team (WOMBAT) is constructing microwave maps which will be more realistic than previous simulations. Our foreground models represent a considerable improvement: where spatial templates are available for a given foreground, we predict the flux and spectral index of that component at each place on the sky and estimate uncertainties. We will produce maps containing simulated CMB anisotropy combined with expected foregrounds. The simulated maps will be provided to the community as the WOMBAT Challenge, so such maps can be analyzed to extract cosmological parameters by scientists who are unaware of their input values. This will test the efficacy of foreground subtraction, power spectrum analysis, and parameter estimation techniques and help identify the areas most in need of progress. These maps are also part of the FORECAST project, which allows web-based access to the known foreground maps for the planning of CMB missions.
We compare the performance of multiple codes written by different groups for making polarized maps from Planck-sized, all-sky cosmic microwave background (CMB) data. Three of the codes are based on a destriping algorithm; the other three are implementations of an optimal maximum-likelihood algorithm. Time-ordered data (TOD) were simulated using the Planck Level-S simulation pipeline. Several cases of temperature-only data were run to test that the codes could handle large datasets, and to explore effects such as the precision of the pointing data. Based on these preliminary results, TOD were generated for a set of four 217 GHz detectors (the minimum number required to produce I, Q, and U maps) under two different scanning strategies, with and without noise. Following correction of various problems revealed by the early simulation, all codes were able to handle the large data volume that Planck will produce. Differences in maps produced are small but noticeable; differences in computing resources are large.
Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. Filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signals on the resulting maps. In this work we explicitly construct a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in which the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigate the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then study the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may have on the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focus on polarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR.
The COBE satellite has provided the only comprehensive multi-frequency full-sky observations of the microwave sky available today. Assessment of the observations requires a detailed likelihood analysis to extract the maximum amount of information present in the noisy data. I present a specific method for estimating the CMB anisotropy power spectrum independent of any assumptions about the underlying cosmology, and then use standard image processing techniques to generate the most revealing corresponding maps of the signal. The consistency of the data at the available frequencies provides strong support to the assertion that we are being provided with our first glimpse of the last scattering surface.
We consider the issue of hemispherical power asymmetry in the three-year WMAP data, adopting a previously introduced modulation framework. Computing both frequentist probabilities and Bayesian evidences, we find that the model consisiting of an isotropic CMB sky modulated by a dipole field, gives a substantially better fit to the observations than the purely isotropic model, even when accounting for the larger prior volume. For the ILC map, the Bayesian log-evidence difference is ~1.8 in favour of the modulated model, and the raw improvement in maximum log-likelihood is 6.1. The best-fit modulation dipole axis points toward (l,b) = (225 deg,-27 deg), and the modulation amplitude is 0.114, in excellent agreement with the results from the first-year analyses. The frequentist probability of obtaining such a high modulation amplitude in an isotropic universe is ~1%. These results are not sensitive to data set or sky cut. Thus, the statistical evidence for a power asymmetry anomaly is both substantial and robust, although not decisive, for the currently available data. Increased sky coverage through better foreground handling and full-sky and high-sensitivity polarization maps may shed further light on this issue.
We create realistic, full-sky, half-arcminute resolution simulations of the microwave sky matched to the most recent astrophysical observations. The primary purpose of these simulations is to test the data reduction pipeline for the Atacama Cosmology Telescope (ACT) experiment; however, we have widened the frequency coverage beyond the ACT bands to make these simulations applicable to other microwave background experiments. Some of the novel features of these simulations are that the radio and infrared galaxy populations are correlated with the galaxy cluster populations, the CMB is lensed by the dark matter structure in the simulation via a ray-tracing code, the contribution to the thermal and kinetic Sunyaev-Zeldovich (SZ) signals from galaxy clusters, groups, and the IGM has been included, and the gas prescription to model the SZ signals matches the most recent X-ray observations. Regarding the contamination of cluster SZ flux by radio galaxies, we find for 148 GHz (90 GHz) only 3% (4%) of halos have their SZ decrements contaminated at a level of 20% or more. We find the contamination levels higher for infrared galaxies. However, at 90 GHz, less than 20% of clusters with M_{200} > 2.5 x 10^{14} Msun and z<1.2 have their SZ decrements filled in at a level of 20% or more. At 148 GHz, less than 20% of clusters with M_{200} > 2.5 x 10^{14} Msun and z<0.8 have their SZ decrements filled in at a level of 50% or larger. Our models also suggest that a population of very high flux infrared galaxies, which are likely lensed sources, contribute most to the SZ contamination of very massive clusters at 90 and 148 GHz. These simulations are publicly available and should serve as a useful tool for microwave surveys to cross-check SZ cluster detection, power spectrum, and cross-correlation analyses.