No Arabic abstract
We show that most gravitational lenses lie on the passively evolving fundamental plane for early-type galaxies. For burst star formation models (1 Gyr of star formation, then quiescence) in low Omega_0 cosmologies, the stellar populations of the lens galaxies must have formed at z_f > 2. Typical lens galaxies contain modest amounts of patchy extinction, with a median differential extinction for the optical (radio) selected lenses of E(B-V) = 0.04 (0.07) mag. The dust can be used to determine both extinction laws and lens redshifts. For example, the z_l=0.96 elliptical lens in MG0414+0534 has an R_V=1.7 +/- 0.1 mean extinction law. Arc and ring images of the quasar and AGN source host galaxies are commonly seen in NICMOS H band observations. The hosts are typically blue, L < L_* galaxies.
We use a simple statistical test to show that the anomalous flux ratios observed in gravitational lenses are created by gravitational perturbations from substructure rather than propagation effects in the interstellar medium or incomplete models for the gravitational potential of the lens galaxy. We review current estimates that the substructure represents between 0.6% and 7% (90% confidence) of the lens galaxy mass, and outline future observational programs which can improve the results.
We describe the goals of the CASTLES (CfA-Arizona-Space-Telescope-LEns-Survey) project including a sample of NICMOS images of gravitational lenses and a brief list of the preliminary findings.
We perform a semi-automated search for strong gravitational lensing systems in the 9,000 deg$^2$ Dark Energy Camera Legacy Survey (DECaLS), part of the DESI Legacy Imaging Surveys (Dey et al.). The combination of the depth and breadth of these surveys are unparalleled at this time, making them particularly suitable for discovering new strong gravitational lensing systems. We adopt the deep residual neural network architecture (He et al.) developed by Lanusse et al. for the purpose of finding strong lenses in photometric surveys. We compile a training set that consists of known lensing systems in the Legacy Surveys and DES as well as non-lenses in the footprint of DECaLS. In this paper we show the results of applying our trained neural network to the cutout images centered on galaxies typed as ellipticals (Lang et al.) in DECaLS. The images that receive the highest scores (probabilities) are visually inspected and ranked. Here we present 335 candidate strong lensing systems, identified for the first time.
Many strong gravitational lenses lie in complex environments, such as poor groups of galaxies, that significantly bias conclusions from lens analyses. We are undertaking a photometric survey of all known galaxy-mass strong lenses to characterize their environments and include them in careful lens modeling, and to build a large, uniform sample of galaxy groups at intermediate redshifts for evolutionary studies. In this paper we present wide-field photometry of the environments of twelve lens systems with 0.24 < z_lens < 0.5. Using a red-sequence identifying technique, we find that eight of the twelve lenses lie in groups, and that ten group-like structures are projected along the line of sight towards seven of these lenses. Follow-up spectroscopy of a subset of these fields confirms these results. For lenses in groups, the group centroid position is consistent with the direction of the external tidal shear required by lens models. Lens galaxies are not all super-L_* ellipticals; the median lens luminosity is < L_*, and the distribution of lens luminosities extends 3 magnitudes below L_* (in agreement with theoretical models). Only two of the lenses in groups are the brightest group galaxy, in qualitative agreement with theoretical predictions. As in the local Universe, the highest velocity-dispersion groups contain a brightest member spatially coincident with the group centroid, whereas lower-dispersion groups tend to have an offset brightest group galaxy. This suggests that higher-dispersion groups are more dynamically relaxed than lower-dispersion groups and that at least some evolved groups exist by z ~ 0.5.
With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately-sampled fields. Using a group finding algorithm, we find 210 groups with at least five member galaxies; the median number of members is eight. Our sample spans redshifts of 0.04 $le z_{grp} le$ 0.76 with a median of 0.31, including 174 groups with $0.1 < z_{grp} < 0.6$. Groups have radial velocity dispersions of 60 $le sigma_{grp} le$ 1200 km s$^{-1}$ with a median of 350 km s$^{-1}$. We also discover a supergroup in field B0712+472 at $z =$ 0.29 consisting of three main groups. We recover groups similar to $sim$ 85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically 1) the distribution of $sigma_{grp}$, 2) the fraction of all sample galaxies that are group members, and 3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. There are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive ($sigma_{grp} ge$ 500 km s$^{-1}$) group or group candidate projected within 2$^{prime}$ of the lens.