No Arabic abstract
The MUNICS project is an ongoing imaging survey designed to cover 3 sq. degrees in V,R,I,J,K. We describe here partial results of the project concerning the clustering properties of K < 19.5 galaxies in scales of 3.6 to 63.0 over an area of $sim 800 arcmin^2$. We present K data for a sample of 20 fields, five of which contain $z > 0.5$ radio-loud quasars with steep spectra, eight contain $z > 0.5$ radio-loud quasars with flat spectra and seven are high-galactic latitude fields with no quasars in them. The two-point angular correlation function for the total sample shows significant clustering at $sim 5 sigma$ level of K=19.5 galaxies. The correlation angle of the galaxies is $theta_0 = 1.7 pm 0.4$ for K < 19 mag and $theta_0 = 1.0 pm 0.2$ for K < 19.5 mag. When the correlation functions for the subsamples are considered, the mean $omega(theta)$ amplitude of the fields which contain steep-spectra $z > 0.5$ radio-loud quasars is determined to be $sim 2.0 - 2.5$ that of the high-galactic latitude fields.
We summarize the results obtained from the MUNICS K-band selected Galaxy survey thus far. MUNICS is a wide-area, medium-deep, photometric and spectroscopic survey selected in the K band, targeting randomly-selected high Galactic latitude fields. It covers an area of roughly one square degree in the K and J bands with optical imaging in the I, R, V, and B bands in 0.5 square degrees. The MUNICS photometric survey is complemented by spectroscopic follow-up observations down to limits of K<17.5 (wide area) and K<19.5 (smaller area). We have obtained 593 redshifts to this date. Here, we present results concerning the evolution of the K-band luminosity function to z ~ 1, both from the full photometric redshift sample and from the spectroscopic sample alone. We also report on new results concerning the evolution of the stellar mass function to z ~ 1. We fit stellar population synthesis models to our multicolor photometry to obtain M/L values for each source. We detect significant evolution in the stellar mass function and we find that more massive systems evolve faster in number density than less massive systems. We also measure the evolution of the total stellar mass density of the universe and find that about half the present day stellar mass formed since z ~ 1.
We present deep BVrI multicolor photometry in the field of the quasar BR1202-07 (z_{em}=4.694) aimed at selecting field galaxies at z>4. We compare the observed colors of the galaxies in the field with those predicted by spectral synthesis models including UV absorption by the intergalactic medium and we define a robust multicolor selection of galaxies at z>4. We provide spectroscopic confirmation of the high redshift QSO-companion galaxy (z=4.702) selected by our method. The first estimate of the surface density of galaxies in the redshift interval 4<z<4.5 is obtained for the same field, corresponding to a comoving volume density of ~ 10^{-3}$ Mpc$^{-3}. This provides a lower limit to the average star formation rate of the order of 10^{-2} Mo/yr/Mpc^{-3} at z~ 4.25.
The Munich Near-IR Cluster Survey (MUNICS) is a K selected survey covering 1 square degree in the K and J NIR bands with complementary optical photometry in the V, R, and I bands covering a subarea of 0.35 square degrees. The 3-sigma limiting magnitude is 19.5 in K. The main goals of the project are the identification of clusters of galaxies at redshifts 0.6<z<1.0 and the study of the evolution of the early-type field population at similar redshifts. Here we present first results regarding color distributions and the surface densities of EROs as well as photometric redshifts and a first clustering analysis of the sample.
The results of a search for distant clusters of galaxies performed using the I-band data obtained by the ESO Imaging Survey (EIS) are presented. Cluster candidates are identified using a matched filter algorithm, that provides not only an objective detection criterion, but also the means to estimate the cluster redshift and richness. A preliminary sample of distant clusters has been obtained, containing 252 cluster candidates with estimated redshift in the interval 0.2 < z < 1.3 (median redshift z_med ~ 0.4) over an area of approximately 14 square degrees. The adopted selection criteria for the inclusion of cluster candidates in this sample has been in general conservative, as the primary concern has been the reliability of the candidates rather than the completeness of the sample.
(Abridged) We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out with GTC/OSIRIS. SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field (130 arcmin^2) at wavelengths 500 to 950 nm and using 24 contiguous medium-band filters (spectral resolution R 50). The data reach 26.5 mag (>3-sigma level) with sub-arcsec seeing in all bands. SHARDS main goal is obtaining accurate physical properties of interm- and high-z galaxies using well-sampled optical SEDs with sufficient spectral resolution to measure absorption and emission features. Among the different populations of high-z galaxies, SHARDS principal targets are massive quiescent galaxies at z>1. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures applied to the GTC/OSIRIS data. We present science demonstration results about the detection and study of emission-line galaxies (star-forming and AGN) at z=0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies at 1.0<z<1.4. We discuss on the improvements introduced by the SHARDS dataset in the analysis of their SFH and stellar properties. We discuss the systematics arising from the use of different stellar population libraries. We find that the UV-to-MIR SEDs of the massive quiescent galaxies at z=1.0-1.5 are well described by an exponential decaying SFH with scale tau=100-200 Myr, age 1.5-2.0 Gyr, solar or slightly sub-solar metallicity, and moderate extinction, A(V)~0.5 mag. We also find that galaxies with masses above M* are typically older than lighter galaxies, as expected in a downsizing scenario of galaxy formation. This trend is, however, model dependent, i.e., it is significantly more evident in the results obtained with some stellar population synthesis libraries and almost absent in others.