Dense Molecular Gas Associated with the Circumnuclear Star Forming Ring in the Barred Spiral Galaxy NGC 6951


Abstract in English

We present high resolution (3 - 5) observations of CO(1-0) and HCN(1-0) emission from the circumnuclear star forming ring in the barred spiral galaxy NGC 6951, a host of a type-2 Seyfert, using the Nobeyama Millimeter Array and 45 m telescope. We find that most of the HCN emission is associated with the circumnuclear ring, where vigorous star formation occurs. The HCN to CO integrated intensity ratio is also enhanced in the star forming ring; the peak value of HCN/CO ratio is 0.18, which is comparable to the ratio in the starbursts NGC 253 and M82. The formation mechanism of dense molecular gas has been investigated. We find that the shocks along the orbit crowding do not promote the formation of the dense molecular gas effectively but enhance the presence of low density GMCs. Instead, gravitational instabilities of the gas can account for the dense molecular gas formation. The HCN/CO ratio toward the Seyfert nucleus of NGC 6951 is a rather normal value (0.086), in contrast with other Seyferts NGC 1068 and M51 where extremely high HCN/CO value of ~ 0.5 have been reported.

Download