No Arabic abstract
We describe the evolutionary progression of an outburst of the Rapid Burster. Four outbursts have been observed with the Rossi X-Ray Timing Explorer between February 1996 and May 1998, and our observations are consistent with a standard evolution over the course of each. An outburst can be divided into two distinct phases: Phase I is dominated by type I bursts, with a strong persistent emission component; it lasts for 15-20 days. Phase II is characterized by type II bursts, which occur in a variety of patterns. The light curves of time-averaged luminosity for the outbursts show some evidence for reflares, similar to those seen in soft X-ray transients. The average recurrence time for Rapid Burster outbursts during this period has been 218 days, in contrast with an average ~180 day recurrence period observed during 1976-1983.
We present observations of the Rapid Burster (RB, also known as MXB 1730-335) using the Chandra High Energy Transmission Grating Spectrometer. The average interval between type II (accretion) bursts was about 40 s. There was one type I (thermonuclear flash) burst and about 20 mini-bursts which are probably type II bursts whose peak flux is 10-40% of the average peak flux of the other type II bursts. The time averaged spectra of the type II bursts are well fit by a blackbody with a temperature of kT = 1.6 keV, a radius of 8.9 km for a distance of 8.6 kpc, and an interstellar column density of 1.7e22 per sq. cm. No narrow emission or absorption lines were clearly detected. The 3 sigma upper limits to the equivalent widths of any features are < 10 eV in the 1.1-7.0 keV band and as small as 1.5 eV near 1.7 keV. We suggest that Comptonization destroys absorption features such as the resonance line of Fe XXVI.
We observed the Rapid Burster with Chandra when it was in the banana state that usually precedes the type-II X-ray bursting island state for which the source is particularly known. We employed the High-Energy Transmission Grating Spectrometer in combination with the ACIS-S detector in continuous clocking mode. The observation yielded 20 thermonuclear type-I X-ray bursts emitted from the neutron star surface with recurrence times between 0.9 and 1.2 hr, and an e-folding decay time scale of 1 min. We searched for narrow spectral features in the burst emission that could constrain the composition of the ashes of the nuclear burning and the compactness of the neutron star, but found none. The upper limit on the equivalent width of narrow absorption lines between 2 and 6 keV is between 5 and 20 eV (single trial 3 sigma confidence level) and on those of absorption edges between 150 and 400 eV. The latter numbers are comparable to the levels predicted by Weinberg, Bildsten & Schatz (2006) for Eddington-limited thermonuclear bursts.
We report the first detection with INTEGRAL of persistent hard X-ray emission (20 to 100 keV) from the Rapid Burster (MXB 1730-335), and describe its full spectrum from 3 to 100 keV. The source was detected on February/March 2003 during one of its recurrent outbursts. The source was clearly detected with a high signal to noise ratio during the single pointings and is well distinguished from the neighboring source GX 354-0. The 3 - 100 keV X-ray spectrum of the persistent emission is well described by a two-component model consisting of a blackbody plus a power-law with photon index ~ 2.4. The estimated luminosity was ~ 8.5x10^{36} erg/s in the 3 - 20 keV energy band and ~ 1.3x10^{36} erg/s in the 20 - 100 keV energy range, for a distance of 8 kpc.
The Rapid Burster (MXB 1730-335) is a unique object, showing both type I and type II X-ray bursts. A type I burst of the Rapid Burster was observed with Swift/XRT on 2009 March 5, showing photospheric radius expansion for the first time in this source. We report here on the mass and radius determination from this photospheric radius expansion burst using a Bayesian approach. After marginalization over the likely distance of the system (5.8-10 kpc) we obtain M=1.1+/-0.3 M_sun and R=9.6+/-1.5 km (1-sigma uncertainties) for the compact object, ruling out the stiffest equations of state for the neutron star. We study the sensitivity of the results to the distance, the color correction factor, and the hydrogen mass fraction in the envelope. We find that only the distance plays a crucial role.
We have searched the rising portion of type I X-ray bursts observed from the Rapid Burster with the Rossi X-ray Timing Explorer for the presence of periodicities. The 95 per cent confidence upper limit on the average root-mean-square variation of near coherent pulsations with a width of <1 Hz (in 60--2048 Hz) during the first second of the bursts is <8.8 per cent. We find a possible detection (>98 per cent significance) at 306.5 Hz.