Do you want to publish a course? Click here

BeppoSAX observations of a new X-ray burster in the Galactic Center region, possibly coincident with a recurrent transient

177   0   0.0 ( 0 )
 Added by GianLuca
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report BeppoSAX NFI observations of the X-ray source SAX~J1747.0--2853 recently discovered in the region of the Galactic Center. The presence of type I X-ray bursts indicates that this source, positionally coincident with the transient GX~0.2--0.2 observed in 1976, is a neutron star accreting from a low mass companion.



rate research

Read More

4U 1705-44 is one of the most-studied type I X-ray burster and Atoll sources. This source represents a perfect candidate to test different models proposed to self-consistently track the physical changes occurring between different spectral states because it shows clear spectral state transitions. The broadband coverage, the sensitivity and energy resolution of the BeppoSAX satellite offers the opportunity to disentangle the components that form the total X-ray spectrum and to study their changes according to the spectral state. Using two BeppoSAX observations carried out in August and October 2000, respectively, for a total effective exposure time of about 100 ks, we study the spectral evolution of the source from a soft to hard state. Energy spectra are selected according to the source position in the color-color diagram (CCD) Results. We succeeded in modeling the spectra of the source using a physical self-consistent scenario for both the island and banana branches (the double Comptonization scenario). The components observed are the soft Comptonization and hard Comptonization, the blackbody, and a reflection component with a broad iron line. When the source moves from the banana state to the island state, the parameters of the two Comptonization components change significantly and the blackbody component becomes too weak to be detected. We interpret the soft Comptonization component as emission from the hot plasma surrounding the neutron star, hard Comptonization as emission from the disk region, and the blackbody component as emission from the inner accretion disk. The broad feature in the iron line region is compatible with reflection from the inner accretion disk.
202 - Jean in t Zand 2004
We review the results obtained with the Galactic center campaigns of the BeppoSAX Wide Field X-ray Cameras (WFCs). This pertains to the study of luminous low-mass X-ray binaries (LMXBs). When pointed at the Galactic center, the WFC field of view contains more than half of the Galactic LMXB population. The results exemplify the excellent WFC capability to detect brief X-ray transients. Firstly, the WFCs expanded the known population of Galactic thermonuclear X-ray bursters by 50%. At least half of all LMXBs are now established to burst and, thus, to contain a neutron star as compact accretor rather than a black hole candidate. We provide a complete list of all 76 currently known bursters, including the new case 1RXS J170854.4-321857. Secondly, the WFCs have uncovered a population of weak transients with peak luminosities up to ~10^37 erg/s and durations from days to weeks. One is the first accretion-powered millisecond pulsar SAX J1808.4-3658. Thirdly, the WFCs contributed considerably towards establishing that nearly all (12 out of 13) luminous low-mass X-ray binaries in Galactic globular clusters contain neutron stars rather than black holes. Thus, the neutron star to black hole ratio in clusters differs from that in the Galactic disk at a marginal confidence level of 97%.
We present a catalogue of 107 point-like X-ray sources derived from a systematic analysis of all the ROSAT PSPC observations of the galactic center region performed in 1992-1993. Besides SgrA*, the massive black hole at the galactic center, 41 X-ray sources have been positionally associated with already classified objects. Twenty are identified with foreground stars and five with known Low Mass X-ray Binaries. The majority of the sources in our catalogue still remains unidentified. They are hard and/or severely absorbed and probably represent a large population of X-ray binaries located in the galactic center region, accreting at low accretion rates, and still largely unknown.
284 - K. Koyama , Y. Hyodo , T. Inui 2007
We report on the diffuse X-ray emissions from the Galactic center (GCDX) observed with the X-ray Imaging Spectrometer (XIS) on board the Suzaku satellite. The highly accurate energy calibrations and extremely low background of the XIS provide many new facts on the GCDX. These are (1) the origin of the 6.7/7.0keV lines is collisional excitation in hot plasma, (2) new SNR and super-bubble candidates are found, (3) most of the 6.4keV line is fluorescence by X-rays, and (4) time variability of the 6.4keV line is found from the SgrB2 complex.
An elongated X-ray source with a strong K-shell line from He-like iron (Fe XXVI) is found at (RA, Dec)_{J2000.0}=(17h44m00s.0, -29D1340.9) in the Galactic center region. The position coincides with the X-ray thread, G359.55+0.16, which is aligned with the radio non-thermal filament. The X-ray spectrum is well fitted with an absorbed thin thermal plasma (apec) model. The best-fit temperature, metal abundance, and column density are 4.1^{+2.7}_{-1.8} keV, 0.58^{+0.41}_{-0.32} solar, and 6.1^{+2.5}_{-1.3}x10^{22} cm^{-2}, respectively. These values are similar to those of the largely extended Galactic center X-ray emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا