Do you want to publish a course? Click here

Dust Spirals and Acoustic Noise in the Nucleus of the Galaxy NGC 2207

125   0   0.0 ( 0 )
 Added by Bruce Elmegreen
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations with the Hubble Space Telescope reveal an irregular network of dust spiral arms in the nuclear region of the interacting disk galaxy NGC 2207. The spirals extend from ~50 pc to ~300 pc in galactocentric radius, with a projected width of ~20 pc. Radiative transfer calculations determine the gas properties of the spirals and the inner disk, and imply a factor of ~4 local gas compression in the spirals. The gas is not strongly self-gravitating, nor is there a nuclear bar, so the spirals could not have formed by the usual mechanisms applied to main galaxy disks. Instead, they may result from acoustic instabilities that amplify at small galactic radii. Such instabilities may promote gas accretion into the nucleus.



rate research

Read More

453 - Karen L. Masters 2010
We investigate the effect of dust on spiral galaxies by measuring the inclination-dependence of optical colours for 24,276 well-resolved SDSS galaxies visually classified in Galaxy Zoo. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 magnitudes for the ugri passbands. We split the sample into bulgy (early-type) and disky (late-type) spirals using the SDSS fracdeV (or f_DeV) parameter and show that the average face-on colour of bulgy spirals is redder than the average edge-on colour of disky spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disk ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with disky spirals at M_r ~ -21.5 mags having the most reddening. This decrease of reddening for the most luminous spirals has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering.
95 - B.G. Elmegreen 2000
Hubble Space Telescope images of the galaxies NGC 2207 and IC 2163 show star formation and dust structures in a system that has experienced a recent grazing encounter. Tidal forces from NGC 2207 compressed and elongated the disk of IC 2163, forming an oval ridge of star formation. Gas flowing away from this ridge has thin parallel dust filaments transverse to the direction of motion. Numerical models suggest that the filaments come from flocculent spiral arms that were present before the interaction. A dust lane at the outer edge of the tidal tail is a shock front where the flow abruptly changes direction. A spiral arm of NGC 2207 that is backlit by IC 2163 is seen to contain several parallel, knotty filaments that are probably shock fronts in a density wave. Blue clusters of star formation inside these dust lanes show density wave triggering by local gravitational collapse. Spiral arms inside the oval of IC 2163 could be the result of ILR-related orbits in the tidal potential that formed the oval. Their presence suggests that tidal forces alone may initiate a temporary nuclear gas flow and eventual starburst without first forming a stellar bar. Several emission structures resembling jets 100-1000 pc long appear. There is a dense dark cloud with a conical shape 400 pc long and a bright compact cluster at the tip, and with a conical emission nebula of the same length that points away from the cluster in the other direction. This region coincides with a non-thermal radio continuum source that is 1000 times the luminosity of Cas A at 20 cm.
We present near-infrared interferometric data on the Seyfert 2 galaxy NGC 1068, obtained with the GRAVITY instrument on the European Southern Observatory Very Large Telescope Interferometer. The extensive baseline coverage from 5 to 60 Mlambda allowed us to reconstruct a continuum image of the nucleus with an unrivaled 0.2 pc resolution in the K-band. We find a thin ring-like structure of emission with a radius r = 0.24+/-0.03 pc, inclination i = 70+/-5 deg, position angle PA = -50+/-4 deg, and h/r < 0.14, which we associate with the dust sublimation region. The observed morphology is inconsistent with the expected signatures of a geometrically and optically thick torus. Instead, the infrared emission shows a striking resemblance to the 22 GHz maser disc, which suggests they share a common region of origin. The near-infrared spectral energy distribution indicates a bolometric luminosity of (0.4-4.7) x 10^45 erg/s, behind a large A_K ~ 5.5 (A_V ~ 90) screen of extinction that also appears to contribute significantly to obscuring the broad line region.
64 - Edward Colbert 2002
(abridged) Based on observations of the Seyfert nucleus in NGC1068 with ASCA, RXTE and BeppoSAX, we report the discovery of a flare (increase in flux by a factor of ~1.6) in the 6.7 keV Fe K line component between observations obtained 4 months apart, with no significant change in the other (6.21, 6.4, and 6.97 keV) Fe K_alpha line components. During this time, the continuum flux decreased by ~20%. The RXTE spectrum requires an Fe K absorption edge near 8.6 keV (Fe XXIII - XXV). The spectral data indicate that the 2-10 keV continuum emission is dominated (~2/3 of the luminosity) by reflection from a previously unidentified region of warm, ionized gas located <~ 0.2 pc from the AGN. The remaining ~1/3 of the observed X-ray emission is reflected from optically thick, neutral gas. The inferred properties of the warm reflector (WR) are: size (diameter) <~0.2 pc, gas density n >~ 10^{5.5} /cm3, ionization parameter xi approx 10^{3.5} erg cm/s, and covering fraction 0.003 (L_0/10^{43.5} erg/s)^{-1} < (Omega/4 pi) < 0.024 (L_0/10^{43.5})^{-1}, where L_0 is the intrinsic 2-10 keV X-ray luminosity of the AGN. We suggest that the WR gas is the source of the (variable) 6.7 keV Fe line emission, and the 6.97 keV Fe line emission. The 6.7 keV line flare is assumed to be due to an increase in the emissivity of the WR gas from a decrease (by 20-30%) in L_0. The properties of the WR are most consistent with an intrinsically X-ray weak AGN with L_0 approx 10^{43.0} erg/s. The optical and UV emission that scatters from the WR into our line of sight is required to suffer strong extinction, which can be reconciled if the line-of-sight skims the outer surface of the torus. Thermal bremsstrahlung radio emission from the WR may be detectable in VLBA radio maps of the NGC 1068 nucleus.
IC 2163 and NGC 2207 are interacting galaxies that have been well studied at optical and radio wavelengths and simulated in numerical models to reproduce the observed kinematics and morphological features. Spitzer IRAC and MIPS observations reported here show over 200 bright clumps from young star complexes. The brightest IR clump is a morphologically peculiar region of star formation in the western arm of NGC 2207. This clump, which dominates the Halpha and radio continuum emission from both galaxies, accounts for ~12% of the total 24mu m flux. Nearly half of the clumps are regularly spaced along some filamentary structure, whether in the starburst oval of IC 2163 or in the thin spiral arms of NGC 2207. This regularity appears to influence the clump luminosity function, making it peaked at a value nearly a factor of 10 above the completeness limit, particularly in the starburst oval. This is unlike the optical clusters inside the clumps, which have a luminosity function consistent with the usual power law form. The giant IR clumps presumably formed by gravitational instabilities in the compressed gas of the oval and the spiral arms, whereas the individual clusters formed by more chaotic processes, such as turbulence compression, inside these larger-scale structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا