Do you want to publish a course? Click here

On-line determination of stellar atmospheric parameters Teff, log g, [Fe/H] from ELODIE echelle spectra. II - The library of F5 to K7 stars

93   0   0.0 ( 0 )
 Added by Caroline Soubiran
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

A library of 211 echelle spectra taken with ELODIE at the Observatoire de Haute-Provence is presented. It provides a set of spectroscopic standards covering the full range of gravities and metallicities in the effective temperature interval [4000 K, 6300 K]. The spectra are straightened, wavelength calibrated, cleaned of cosmic ray hits, bad pixels and telluric lines. They cover the spectral range [440 nm, 680 nm] with an instrumental resolution of 42000. For each star, basic data were compiled from the Hipparcos catalogue and the Hipparcos Input Catalogue. Radial velocities with a precision better than 100 m/s are given. Atmospheric parameters (Teff, log g, [Fe/H]) from the literature are discussed. Because of scattered determinations in the bibliography, even for the most well-known stars, these parameters were adjusted by an iterative process which takes account of common or different spectral features between the standards, using our homogeneous set of spectra. Revised values of (Teff, log g, [Fe/H]) are proposed. They are still consistent with the literature, and also lead to the self-consistency of the library, in the sense that similar spectra have similar atmospheric parameters. This adjustment was performed by using step by step a method based on the least square comparison of carefully prepared spectra, which was originally developed for the on-line estimation of the atmospheric parameters of faint field stars (companion paper in the main journal). The spectra and corresponding data will only be available in electronic form at the CDS (ftp cdsarc.u-strasbg.fr or http://cdsweb.u-strasbg.fr/Abstract.html).



rate research

Read More

67 - Shawn Snider 1999
New generation large-aperture telescopes, multi-object spectrographs, and large format detectors are making it possible to acquire very large samples of stellar spectra rapidly. In this context, traditional star-by-star spectroscopic analysis are no longer practical. New tools are required that are capable of extracting quickly and with reasonable accuracy important basic stellar parameters coded in the spectra. Recent analyses of Artificial Neural Networks (ANNs) applied to the classification of astronomical spectra have demonstrated the ability of this concept to derive estimates of temperature and luminosity. We have adapted the back-propagation ANN technique developed by von Hippel et al. (1994) to predict effective temperatures, gravities and overall metallicities from spectra with resolving power ~ 2000 and low signal-to-noise ratio. We show that ANN techniques are very effective in executing a three-parameter (Teff,log g,[Fe/H]) stellar classification. The preliminary results show that the technique is even capable of identifying outliers from the training sample.
The X-shooter Spectral Library (XSL) is an empirical stellar library at medium spectral resolution covering the wavelength range from 3000 AA to 24 800 AA. This library aims to provide a benchmark for stellar population studies. In this work, we present a uniform set of stellar atmospheric parameters, effective temperatures, surface gravities, and iron abundances for 754 spectra of 616 XSL stars. We used the full-spectrum fitting package ULySS with the empirical MILES library as reference to fit the ultraviolet-blue (UVB) and visible (VIS) spectra. We tested the internal consistency and we compared our results with compilations from the literature. The stars cover a range of effective temperature 2900 < Teff < 38 000 K, surface gravity 0 < log g < 5.7, and iron abundance -2.5 < [Fe/H] < +1.0, with a couple of stars extending down to [Fe/H] = -3.9. The precisions of the measurements for the G- and K-type stars are 0.9%, 0.14, and 0.06 in Teff, log g, and [Fe/H], respectively. For the cool giants with log g < 1, the precisions are 2.1%, 0.21, and 0.22, and for the other cool stars these values are 1%, 0.14, and 0.10. For the hotter stars (Teff > 6500 K), these values are 2.6%, 0.20, and 0.10 for the three parameters.
We present an investigation of velocity fields in early to late M-type hydrodynamic stellar atmosphere models. These velocities will be expressed in classical terms of micro- and macro-turbulent velocities for usage in 1D spectral synthesis. The M-star model parameters range between log g of 3.0 - 5.0 and Teff of 2500 K - 4000 K. We characterize the Teff- and log g-dependence of the hydrodynamical velocity fields in these models with a binning method, and for the determination of micro-turbulent velocities, the Curve of Growth method is used. The macro-turbulent velocities are obtained by convolutions with Gaussian profiles. Velocity fields in M-stars strongly depend on log g and Teff. Their velocity amplitudes increase with decreasing log g and increasing Teff. The 3D hydrodynamical and 1D macro-turbulent velocities range from ~100 m/s for cool high gravity models to ~ 800 m/s - 1000 m/s for hot models or models with low log g. The micro-turbulent velocities range in the order of ~100 m/s for cool models, to ~600 m/s for hot or low log g models. Our M-star structure models are calculated with the 3D radiative-hydrodynamics (RHD) code CO5BOLD. The spectral synthesis on these models is performed with the line synthesis code LINFOR3D.
55 - David Montes 1999
We present a library of Penn State Fiber Optic Echelle (FOE) observations of a sample of field stars with spectral types F to M and luminosity classes V to I. The spectral coverage is from 3800 AA to 10000 AA with nominal a resolving power 12000. These spectra include many of the spectral lines most widely used as optical and near-infrared indicators of chromospheric activity such as the Balmer lines (H_alpha, H_beta), Ca II H & K, Mg I b triplet, Na I D_{1} and D_{2}, He I D_{3}, and Ca II IRT lines. There are also a large number of photospheric lines, which can also be affected by chromospheric activity, and temperature sensitive photospheric features such as TiO bands. The spectra have been compiled with the goal of providing a set of standards observed at medium resolution. We have extensively used such data for the study of active chromosphere stars by applying a spectral subtraction technique. However, the data set presented here can also be utilized in a wide variety of ways ranging from radial velocity templates to study of variable stars and stellar population synthesis. This library can also be used for spectral classification purposes and determination of atmospheric parameters (T_eff, log{g}, [Fe/H]). A digital version of all the fully reduced spectra is available via ftp and the World Wide Web (WWW) in FITS format.
We present new ultra-metal-poor (UMP) stars parameters with [Fe/H]<-4.0 based on line-by-line non-local thermodynamic equilibrium (NLTE) abundances using an up-to-date iron model atom with a new recipe for non-elastic hydrogen collision rates. We study the departures from LTE in their atmospheric parameter and show that they can grow up to ~1.0 dex in [Fe/H], 150K in Teff and 0.5 dex in log g toward the lowest metallicities. Accurate NLTE atmospheric stellar parameters, in particular [Fe/H] being signifcantly higher, are the first step to eventually providing full NLTE abundance patterns that can be compared with Population III supernova nucleosynthesis yields to derive properties of the first stars. Overall, this maximizes the potential of these likely second-generation stars to investigate the early universe and how the chemical elements were formed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا