Do you want to publish a course? Click here

HST and ground-based eclipse observations of V2051 Ophiuchi: Binary parameters

173   0   0.0 ( 0 )
 Added by Raymundo Baptista
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on high-speed eclipse photometry of the dwarf nova V2051 Oph while it was in a low brightness state, at B ~ 16.2 mag. In comparison to the average IUE spectra, the ultraviolet continuum and emission lines appear reduced by factors of, respectively, ~4 and ~5. Flickering activity is mostly suppressed and the lightcurve shows the eclipse of a compact white dwarf at disc centre which contributes ~60 per cent of the total light at 3900--4300 A. We use measurements of contact phases in the eclipse lightcurve to derive the binary geometry and to estimate masses and relevant dimensions. We find a mass ratio of q= 0.19+/-0.03 and an inclination of i= 83+/-2 degrees. The masses of the component stars are M_1 = 0.78+/-0.06 M_dot and M_2 = 0.15+/-0.03 M_dot. Our photometric model predicts K_1 = 83+/-12 km/s and K_2= 435+/-11 km/s. The predicted value of K_1 is in accordance with the velocity amplitude obtained from the emission lines after a correction for asymmetric line emission in the disc is made (Watts et al. 1986). The secondary of V2051 Oph is significantly more massive than the secondaries of the other ultra-short period dwarf novae. V2051 Oph is probably a relatively young system, whose secondary star had not enough time to evolve out of thermal equilibrium.



rate research

Read More

We report on the eclipse mapping analysis of an ensemble of light curves of the dwarf nova V2051 Oph with the aim to study the spatial distribution of its steady-light and flickering sources. The data are combined to derive the orbital dependency of the steady-light and the flickering components at two different brightness levels, named the faint and bright states. The differences in brightness are caused by long-term variations in the mass transfer rate from the secondary star. Eclipse maps of the steady-light show enhanced emission along the ballistic stream trajectory, in a clear evidence of gas stream overflow. We identify two different and independent sources of flickering in V2051 Oph. Low-frequency flickering arises in the overflowing gas stream and is associated to the mass transfer process. It maximum emission occurs at the position of closest approach of the gas stream to the white dwarf, and its spatial distribution changes in response to variations in mass transfer rate. High-frequency flickering originates in the accretion disk, showing a radial distribution similar to that of the steady-light maps and no evidence of emission from the hot spot, gas stream or white dwarf. This disk flickering component has a relative amplitude of about 3 per cent of the steady disk light, independent of disk radius and brightness state. If the disk flickering is caused by fluctuations in the energy dissipation rate induced by MHD turbulence, its relative amplitude lead to a viscosity parameter alpha= 0.1-0.2 at all radii for the quiescent disk. This value seems uncomfortably high to be accommodated by the disk instability model [abridged].
Although flickering is one of the fundamental signatures of accretion, it is also the most poorly understood aspect of the accretion processes. A promising step towards a better undestanding of flickering consists in using the eclipse mapping method to probe the surface distribution of the flickering sources. We report on the analysis of light curves of the dwarf nova and strong flicker V2051 Ophiuchi with eclipse mapping techniques to produce the first maps of the flickering brightness distribution in an accretion disc.
We present Spitzer Space Telescope and complementary ground-based infrared observations of the recurrent nova RS Ophiuchi, obtained over the period 64-111 days after the 2006 eruption. The Spitzer IRS data show a rich emission line spectrum superimposed on a free-free continuum. The presence of fine structure and coronal infrared lines lead us to deduce that there are at least two temperatures (1.5e5K and 9e5K) in the ejecta/wind environment, and that the electron density in the `cooler region is 2.2e5 cm-3. The determination of elemental abundances is not straightforward but on the assumption that the Ne and O fine structure lines arise in the same volume of the ejecta, the O/Ne ratio is >~0.6 by number.
230 - R. Alonso , H.J. Deeg , P. Kabath 2010
We present the results of a ground-based search for the secondary eclipse of the 3.3 Mjup transiting planet CoRoT-2b. We performed near infrared photometry using the LIRIS instrument on the 4.2 m William Herschel Telescope, in the H and K_s filters. We monitored the star around two expected secondary eclipses in two nights under very good observing conditions. For the depth of the secondary eclipse we find in H-band a 3 sigma upper limit of 0.17%, whereas we detected a tentative eclipse with a depth of 0.16+-0.09% in the K_s-band. These depths can be translated into brightness temperatures of T_H<2250 K and T_{K_s} = 1890(+260-350) K, which indicate an inefficient re-distribution of the incident stellar flux from the planets dayside to its nightside. Our results are in agreement with the CoRoT optical measurement (Alonso et al. 09) and with Spitzer 4.5 and 8 micron results (Gillon et al. 09c).
We report on the investigation of the spatial distribution of the flickering sources in the dwarf nova V2051 Oph with eclipse mapping techniques. Low-frequency flickering originates in the gas stream and is related to the mass transfer process, whereas high-frequency flickering arises in the accretion disk and is probably connected to magneto-hydrodynamic turbulence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا