Do you want to publish a course? Click here

Polarimetry and spectroscopy of the polar RX J1141.3-6410

48   0   0.0 ( 0 )
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first optical polarimetric measurements of RX J1141.3-6410 which confirm that star as a polar. The circular polarization varies between 0 and 13% with the orbital period. Halpha spectroscopy shows that this line is formed by, at least, two components: a broad and a narrow one. The phase of maximum redshift of the broad component is shifted by 0.5 with the phase of maximum circular polarization which is not usual for this class of stars. We suggest a geometrical configuration for the system which could explain the main features of the polarimetric and spectroscopic data.

rate research

Read More

91 - Merlin Kole 2018
In the first half year of operation the satellite borne POLAR instrument detected a total of 55 Gamma-Ray Bursts about 10 of which were bright enough to allow for detailed polarization studies, thereby forming the start of the first Gamma-Ray Burst polarization catalog. In this paper a brief overview of the previous GRB polarization studies will be presented followed by an overview of the POLAR detector along with the first result of the in-flight performance. The detected Gamma-Ray bursts will be presented and finally prospects for polarization measurements of these events will be discussed.
We report optical and X-ray observations of the high-field polar RXJ1007.5-2017 performed between 1990 and 2012. It has an orbital period of 208.60 min determined from the ellipsoidal modulation of the secondary star in an extended low state. The spectral flux of the dM3- secondary star yields a distance of 790+-105 pc. At low accretion levels, RX{} exhibits pronounced cyclotron emission lines. The second and third harmonic fall in the optical regime and yield a field strength in the accretion spot of 94 MG. The source is highly variable on a year-to-year basis and was encountered at visual magnitudes between V sim 20 and V sim 16. In the intermediate state of 1992 and 2000, the soft X-ray luminosity exceeds the sum of the luminosities of the cyclotron source, the hard X-ray source, and the accretion stream by an order of magnitude. An X-ray high state, corresponding to the brightest optical level, has apparently not been observed so far.
We present the first optical photometry of the counterpart to the candidate intermediate polar RX J0153.3+7446. This reveals an optical pulse period of 2333s +/- 5s. Reanalysis of the previously published ROSAT X-ray data reveals that the true X-ray pulse period is probably 1974s +/- 30s, rather than the 1414 s previously reported. Given that the previously noted orbital period of the system is 3.94 h, we are able to identify the X-ray pulse period with the white dwarf spin period and the optical pulse period with the rotation period of the white dwarf in the binary reference frame, as commonly seen in other intermediate polars. We thus confirm that RX J0153.3+7446 is indeed a typical intermediate polar.
The nuclei of Seyfert 1 galaxies exhibit a range of optical polarization characteristics that can be understood in terms of two scattering regions producing orthogonal polarizations: an extended polar scattering region (PSR) and a compact equatorial scattering region (ESR), located within the circum-nuclear torus. Here we present NICMOS 2.0 micron imaging polarimetry of 6 polar scattered Seyfert 1 (S1) galaxies, in which the PSR dominates the optical polarization. The unresolved nucleus (<0.58 arcsec) is significantly polarized in only three objects, but 5 of the 6 exhibit polarization in a 0.58 to 1.5 arcsec circum-nuclear annulus. In Fairall 51 and ESO 323-G077, the polarization position angle at 2 microns (theta2m) is consistent with the average for the optical spectrum (thetav), implying that the nuclear polarization is dominated by polar scattering at both wavelengths. The same is probably true for NGC 3227. In both NGC 4593 and Mrk 766, there is a large difference between theta2m and thetav off nucleus, where polar scattering is expected to dominate. This may be due to contamination by interstellar polarization in NGC 4593, but there is no clear explanation in the case of the strongly polarized Mrk 766. Lastly, in Mrk 1239, a large change (~ 60deg) in theta2m between the nucleus and the annulus indicates that the unresolved nucleus and its immediate surroundings have different polarization states at 2 microns, which we attribute to the ESR and PSR, respectively. A further implication is that the source of the scattered 2 micron emission in the unresolved nucleus is the accretion disk, rather than torus hot dust emission.
58 - Gavin Ramsay 1998
Following the suggestion of Schwope et al that the magnetic cataclysmic variable RX J2115-5840 maybe a near-synchronous polar, we obtained optical polarimetry of this system over a 2 week period. From a power spectrum of the circular polarimetry data we determine that the spin period of the white dwarf and the binary orbital period which differ by 1.2%. RX J2115-5840 is thus the fourth near synchronous polar and has the shortest spin-orbit beat period: 6.3 days. By folding the data on spin, beat and orbital periods we find evidence that the accretion stream is directed towards opposite magnetic poles as the stream precesses around the white dwarf on the spin-orbit beat period. The phasing requires that the accretion flow must be directed onto the same magnetic field line at all spin-orbit beat phases implying that at some phases the flow must follow a path around the white dwarf before accreting. This is difficult to reconcile with simple views of how the accretion stream attaches onto the magnetic field of the white dwarf.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا