Do you want to publish a course? Click here

The Hubble Space Telescope Quasar Absorption Line Key Project XIII. A Census of Absorption Line Systems at Low Redshift

58   0   0.0 ( 0 )
 Added by John N. Bahcall
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a catalogue of absorption lines obtained from the analysis of the ultra-violet spectra of 66 quasars. The data were acquired with the Faint Object Spectrograph of the HST as part of the Quasar Absorption Line Survey, a Key Project for the first four cycles of HST observations. This is the third of a series of catalogues of absorption lines produced from the survey and increases the number of quasars whose higher resolution (R=1300) spectra we have published from 17 to 83. The general properties and execution of the survey are reviewed, including descriptions of the final sample of observed objects and the algorithmic processes used to construct the catalogue. The detection of a single damped Ly-a system in a path length of Delta_z=49 yields an observed number of damped systems per unit redshift of (dN/dz)_{damp}(z=0.58)=0.020 with 95% confidence boundaries of 0.001 to 0.096 systems per unit redshift. We include notes on our analysis of each of the observed quasars and the absorption systems detected in each spectrum. Some especially interesting systems include low redshift Ly-a absorbers suitable for extensive follow-up observations (in the spectra of TON28 and PG1216+069), possibly physically associated pairs of extensive metal line absorption systems (e.g., in the spectrum of PG0117+213), and systems known to be associated with galaxies (e.g., in the spectrum of 3C232).



rate research

Read More

We present a census of z(abs) < 2, intrinsic (those showing partial coverage) and associated [z(abs) ~ z(em)] quasar absorption-line systems detected in the Hubble Space Telescope archive of Space Telescope Imaging Spectrograph echelle spectra. This work complements the Misawa et al. (2007) survey of 2 < z(em) < 4 quasars that selects systems using similar techniques. We confirm the existence of so-called strong N V intrinsic systems (where the equivalent width of H I Ly alpha is small compared to N V 1238) presented in that work, but find no convincing cases of strong C IV intrinsic systems at low redshift/luminosity. Moreover, we also report on the existence of strong O VI systems. From a comparison of partial coverage results as a function of ion, we conclude that systems selected by the N V ion have the highest probability of being intrinsic. By contrast, the C IV and O VI ions are poor selectors. Of the 30 O VI systems tested, only two of the systems in the spectrum on 3C 351 show convincing evidence for partial coverage. However, there is a 3-sigma excess in the number of absorbers near the quasar redshift (|Delta v| <= 5000 km/s) over absorbers at large redshift differences. In at least two cases, the associated O VI systems are known not to arise close to the accretion disk of the quasar.
91 - Patrick B. Hall 2006
I report the discovery of blueshifted broad absorption line (BAL) troughs in at least six transitions of the Balmer series of hydrogen (Hbeta to H9) and in CaII, MgII and excited FeII in the quasar SDSS J125942.80+121312.6. This is only the fourth active galactic nucleus known to exhibit Balmer absorption, all four in conjunction with low-ionization BAL systems containing excited Fe II. The substantial population in the n=2 shell of H I in this quasars absorber likely arises from Ly-alpha trapping. In an absorber sufficiently optically thick to show Balmer absorption, soft X-rays from the quasar penetrate to large tau_Lyalpha and ionize H I. Recombination then creates Ly-alpha photons that increase the n=2 population by a factor tau_Lyalpha since they require about tau_Lyalpha scatterings to diffuse out of the absorber. Observing Ly-alpha trapping in a quasar absorber requires a large but Compton-thin column of gas along our line of sight which includes substantial H I but not too much dust. Presumably the rarity of Balmer-line BAL troughs reflects the rarity of such conditions in quasar absorbers.
Despite extensive efforts, only two quasars have been found at $z>7$ to date due to a combination of low spatial density and high contamination from more ubiquitous Galactic cool dwarfs in quasar selection. This limits our current knowledge of the super-massive black hole (SMBH) growth mechanism and reionization history. In this letter, we report the discovery of a luminous quasar at $z=7.021$, DELS J003836.10$-$152723.6 (hereafter J0038$-$1527), selected using photometric data from DESI Legacy imaging Survey (DELS), Pan-STARRS1 (PS1) imaging Survey, as well as Wide-field Infrared Survey Explore ($WISE$) mid-infrared all-sky survey. With an absolute magnitude of $M_{1450}$=$-$27.1 and bolometric luminosity of $L_{rm Bol}$=5.6$times$10$^{13}$ $L_odot$, J0038$-$1527 is the most luminous quasar known at $z>7$. Deep optical to near infrared spectroscopic observations suggest that J0038-1527 hosts a 1.3 billion solar mass BH accreting at the Eddington limit, with an Eddington ratio of 1.25$pm$0.19. The CIV broad emission line of J0038$-$1527 is blue-shifted by more than 3000 km s$^{-1}$ to the systemic redshift. More detailed investigations of the high quality spectra reveal three extremely high velocity CIV broad absorption lines (BALs) with velocity from 0.08 to 0.14 times the speed of light and total balnicity index of more than 5000 km s$^{-1}$, suggesting the presence of relativistic outflows. J0038$-$1527 is the first quasar found at the epoch of reionization (EoR) with such strong outflows and provides a unique laboratory to investigate AGN feedback on the formation and growth of the most massive galaxies in the early universe.
210 - Patrick Petitjean 1998
It is difficult to describe in a few pages the numerous specific techniques used to study absorption lines seen in QSO spectra and to review even rapidly the field of research based on their observation and analysis. What follows is therefore a pale introduction to the invaluable contribution of these studies to our knowledge of the gaseous component of the Universe and its cosmological evolution. A rich bibliography is given which, although not complete, will be hopefully useful for further investigations. Emphasis will be laid on the impact of this field on the question of the formation and evolution of galaxies.
225 - Patrick Petitjean 1998
Molecules dominate the cooling function of neutral metal-poor gas at high density. Observation of molecules at high redshift is thus an important tool toward understanding the physical conditions prevailing in collapsing gas. Up to now, detections are sparse because of small filling factor and/or sensitivity limitations. However, we are at an exciting time where new capabilities offer the propect of a systematic search either in absorption using the UV Lyman-Werner H2 bands or in emission using the CO emission lines redshifted in the sub-millimeter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا