A Unifying View of the Spectral Energy Distributions of Blazars


Abstract in English

We collect data from the radio to the gamma-ray range for three complete samples of blazars: the Slew Survey and the 1Jy samples of BL Lacs and the 2Jy sample of Flat Spectrum Radio-Loud Quasars (FSRQs). The fraction of objects detected in gamma-rays (E > 100 MeV) is 17%, 26% and 40% in the three samples respectively. Except for the Slew Survey sample, gamma-ray detected sources do not differ either from other sources in each sample, nor from all the gamma-ray detected sources, in terms of the distributions of redshift, radio and X-ray luminosities and of the broad band spectral indices (radio to optical and radio to X-ray). We compute average Spectral Energy Distributions (SEDs) from radio to gamma rays for groups of blazars binned according to radio luminosity, irrespective of the original classification as BL Lac or FSRQ. The resulting SEDs show a remarkable continuity in that: i) the first peak occurs in different frequency ranges for different luminosity classes, with most luminous sources peaking at lower frequencies; ii) the peak frequency of the gamma-ray component correlates with the peak frequency of the lower energy one; iii) the luminosity ratio between the high and low frequency components increases with bolometric luminosity. The continuity of properties among different classes of blazars and the systematic trends of the SEDs as a function of luminosity favor a unified view of the blazar phenomenon: a single parameter, related to luminosity, seems to govern the physical properties and radiation mechanisms in the relativistic jets present in BL Lac objects as well as in FSRQ. The general implications of this unified scheme are discussed.

Download