Do you want to publish a course? Click here

A Unifying View of the Spectral Energy Distributions of Blazars

103   0   0.0 ( 0 )
 Added by Giovanni Fossati
 Publication date 1998
  fields Physics
and research's language is English
 Authors G. Fossati




Ask ChatGPT about the research

We collect data from the radio to the gamma-ray range for three complete samples of blazars: the Slew Survey and the 1Jy samples of BL Lacs and the 2Jy sample of Flat Spectrum Radio-Loud Quasars (FSRQs). The fraction of objects detected in gamma-rays (E > 100 MeV) is 17%, 26% and 40% in the three samples respectively. Except for the Slew Survey sample, gamma-ray detected sources do not differ either from other sources in each sample, nor from all the gamma-ray detected sources, in terms of the distributions of redshift, radio and X-ray luminosities and of the broad band spectral indices (radio to optical and radio to X-ray). We compute average Spectral Energy Distributions (SEDs) from radio to gamma rays for groups of blazars binned according to radio luminosity, irrespective of the original classification as BL Lac or FSRQ. The resulting SEDs show a remarkable continuity in that: i) the first peak occurs in different frequency ranges for different luminosity classes, with most luminous sources peaking at lower frequencies; ii) the peak frequency of the gamma-ray component correlates with the peak frequency of the lower energy one; iii) the luminosity ratio between the high and low frequency components increases with bolometric luminosity. The continuity of properties among different classes of blazars and the systematic trends of the SEDs as a function of luminosity favor a unified view of the blazar phenomenon: a single parameter, related to luminosity, seems to govern the physical properties and radiation mechanisms in the relativistic jets present in BL Lac objects as well as in FSRQ. The general implications of this unified scheme are discussed.



rate research

Read More

115 - J. H. Fan , J. H. Yang , Y. Liu 2016
(Abridged) In this paper, multi-wavelength data are compiled for a sample of 1425 Fermi blazars to calculate their spectral energy distributions (SEDs). A parabolic function, $log( u F_{ u}) = P_1(log u - P_2)^2 + P_3,$ is used for SED fitting. Synchrotron peak frequency ($log u_p$), spectral curvature ($P_1$), peak flux ($ u_{rm p}F_{rm u_p}$), and integrated flux ($ u F_{ u}$) are successfully obtained for 1392 blazars (461 flat spectrum radio quasars-FSRQs, 620 BL Lacs-BLs and 311 blazars of uncertain type-BCUs, 999 sources have known redshifts). Monochromatic luminosity at radio 1.4 GHz, optical R band, X-ray at 1 keV and $gamma$-ray at 1 GeV, peak luminosity, integrated luminosity and effective spectral indexes of radio to optical ($alpha_{rm RO}$), and optical to X-ray ($alpha_{rm OX}$) are calculated. The Bayesian classification is employed to log$ u_{rm p}$ in the rest frame for 999 blazars with available redshift and the results show that 3 components are enough to fit the $log u_{rm p}$ distribution, there is no ultra high peaked subclass. Based on the 3 components, the subclasses of blazars using the acronyms of Abdo et al. (2010a) are classified, and some mutual correlations are also studied. Conclusions are finally drawn as follows: (1) SEDs are successfully obtained for 1392 blazars. The fitted peak frequencies are compared with common sources from samples available (Sambruna et al. 1996, Nieppola et al. 2006, 2008, Abdo et al. 2010a). (2) Blazars are classified as low synchrotron peak sources (LSPs) if $log u_{rm p}$(Hz) $leq 14.0$, intermediate synchrotron peak sources (ISPs) if $14.0 < log u_{rm p}$(Hz) $leq 15.3$, and high synchrotron peak sources (HSPs) if $log u_{rm p}$(Hz) $> 15.3$. (3) $gamma$-ray emissions are strongly correlated with radio emissions. (...)
67 - A. Capetti 2000
We consider archival ROSAT and HST observations of five FRI radio galaxies and isolate their nuclear emission from that of the host galaxy. This enable us to determine the Spectral Energy Distributions (SED) of their nuclei spanning from the radio to the X-ray band. They cannot be described as single power-laws but require the presence of an emission peak located between the IR and soft X-ray band. We found consistency between the SED peak position and the values of the broad band spectral indices of radio galaxies with those of BL Lac, once the effects of beaming are properly taken into account. FRI SED are thus qualitatively similar to those of BL Lacs supporting the identification of FRI sources as their mis-oriented counterparts. No dependence of the shape of the SED on the FR~I orientation is found.
137 - M.Blazejowski 2002
We demonstrate that the spectral differences between Flat Spectrum Radio Quasars (FSRQ) with steep gamma-ray spectra (MeV-blazars) and FSRQ with flat gamma-ray spectra (GeV-blazars) can be explained by assuming that in the MeV-blazars, the production of gamma-rays is dominated by Comptonization of infrared radiation of hot dust, whereas in the GeV-blazars -- by Comptonization of broad emission lines. Additional ingredient, required to reach satisfactory unification, is an assumption that the radiating electrons are accelerated via a two step process, in the lower energy range -- following instabilities driven by shock-reflected ions, and in the higher energy range -- via resonant scatterings off Alfven waves. Our model predicts that on average, the MeV-blazars should vary on longer time scales than GeV-blazars.
As a special contribution to the proceedings of the BeppoSAX workshop dedicated to blazar astrophysics we present a catalog of 157 X-ray spectra and the broad-band Spectral Energy Distribution (SED) of 84 blazars observed by BeppoSAX during its first five years of operations. The SEDs have been built by combining BeppoSAX LECS, MECS and PDS data with (mostly) non-simultaneous multi-frequency photometric data, obtained from NED and from other large databases, including the GSC2 and the 2MASS surveys. All BeppoSAX data have been taken from the public archive and have been analysed in a uniform way. For each source we present a SED plot, and for every BeppoSAX observation we give the best fit parameters of the spectral model that best describes the data. The energy where the maximum of the synchrotron power is emitted spans at least six orders of magnitudes ranging from ~ 0.1 eV to over 100 keV. A wide variety of X-ray spectral slopes have been seen depending on whether the synchrotron or inverse Compton component, or both, are present in the X-ray band. The wide energy bandpass of BeppoSAX allowed us to detect, and measure with good accuracy, continuous spectral curvature in many objects whose synchrotron radiation extends to the X-ray band. This convex curvature, which is described by a logarithmic parabola law better than other models, may be the spectral signature of a particle acceleration process that becomes less and less efficient as the particles energy increases. Finally some brief considerations about other statistical properties of the sample are presented.
(Abridged) We have conducted a detailed investigation of the broad-band spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical and other hard X-ray/gamma-ray data, collected within three months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous Spectral Energy Distributions (SED) for 48 LBAS blazars.The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual Log $ u $ - Log $ u$ F$_ u$ representation, the typical broad-band spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SEDs to characterize the peak intensity of both the low and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broad-band colors (i.e. the radio to optical and optical to X-ray spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency $ u_p^S$ is positioned between 10$^{12.5}$ and 10$^{14.5}$ Hz in broad-lined FSRQs and between $10^{13}$ and $10^{17}$ Hz in featureless BL Lacertae objects.We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron - inverse Compton scenarios. However, simple homogeneous, one-zone, Synchrotron Self Compton (SSC) models cannot explain most of our SEDs, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. (...)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا