No Arabic abstract
We present Faint Object Camera (FOC) ultraviolet images of the central 14x14 of Messier 31 and Messier 32. The hot stellar population detected in the composite UV spectra of these nearby galaxies is partially resolved into individual stars, and their individual colors and apparent magnitudes are measured. We detect 433 stars in M 31 and 138 stars in M 32, down to detection limits of m_F275W = 25.5 mag and m_F175W = 24.5 mag. We investigate the luminosity functions of the sources, their spatial distribution, their color-magnitude diagrams, and their total integrated far-UV flux. Although M 32 has a weaker UV upturn than M 31, the luminosity functions and color-magnitude diagrams of M 31 and M 32 are surprisingly similar, and are inconsistent with a majority contribution from any of the following: PAGB stars more massive than 0.56 Msun, main sequence stars, or blue stragglers. Both the the luminosity functions and color-magnitude diagrams are consistent with a dominant population of stars that have evolved from the extreme horizontal branch (EHB) along tracks with masses between 0.47 and 0.53 Msun. These stars are well below the detection limits of our images while on the zero-age EHB, but become detectable while in the more luminous (but shorter) AGB-Manque and post-early asymptotic giant branch (PEAGB) phases. The FOC observations require that only a only a very small fraction of the main sequence population (2% in M 31 and 0.5% in M 32) in these two galaxies evolve though the EHB and post-EHB phases, with the remainder evolving through bright PAGB evolution that is so rapid that few if any stars are expected in the small field of view covered by the FOC.
We present UV images of M 31 and M 32, as observed by HST with the refurbished FOC. The galaxies were observed through the F175W and F275W filters, allowing the construction of color magnitude diagrams (CMDs) for the hundreds of detected sources found in each image. Comparison of these data with the stellar evolutionary tracks of horizontal branch stars and their progeny shows that for the first time outside of our own Galaxy, we may be measuring the colors of individual stars that are evolving along post asymptotic giant branch (PAGB), post-early AGB, and AGB-Manque paths. Searching to the 6 sigma detection limit, we find 1349 stars in M 31 and 183 stars in M 32. We compare the distribution of stars in the CMDs with the expectations from theory.
We report on recently derived improv
A study of the luminosity function of 36 Abell clusters of galaxies has been carried out using photographic plates obtained with the Palomar 1.2 m Schmidt telescope. The relation between the magnitude M_1 of the brightest cluster member and the Schechter function parameter M* has been analyzed. A positive correlation between M* and M_1 is found. However clusters appear segregated in the M_1-M* plane according to their Rood & Sastry class in such a way that on average M_1 becomes brighter while M* becomes fainter going from late to early Rood & Sastry and also Bautz & Morgan classes. Also a partial correlation analysis involving the magnitude M_10 of the 10th brightest galaxy, shows a negative intrinsic correlation between M_1 and M*. These results agree with the cannibalism model for the formation of brightest cluster members, and provide new constraints for theories of cluster formation and evolution.
Recent surveys of the Local Group spiral Galaxies M31 and M33 with XMM-Newton yielded a large number of X-ray sources. As part of the effort to identify and classify the objects responsible for this X-ray emission, we have obtained optical spectra of the brightest optical counterparts of the identified X-ray sources, using the 1.3m Skinakas Telescope. Most of these objects are foreground star candidates. The purpose of the present study is to confirm this identification and to explore the compatibility between the optical spectral classification and the observed X-ray properties of the sources. We have obtained optical spectra for the 14 brightest optical counterparts of X-ray sources identified by XMM-Newton in the direction of M31 and for 21 optical counterparts in the direction of M33, using the 1.3m Skinakas telescope in Crete, Greece. All of the M31 sources and all but one of the M33 sources were confirmed to be foreground stars, of spectral types between A and M. One of the stars is a late M dwarf with H-alpha emission, a flare star, also displaying strong X-ray variability. One of the M~33 sources (lying within the D25 ellipse) corresponds to a previously known background galaxy, LEDA 5899.
Color Magnitude Diagrams (CMDs) of individual stars in 8 Globular Clusters in M31 down to about 1 mag fainter (V$sim 26.5$) than the Horizontal Branch have been obtained with the Hubble Space Telescope. In particular, we observed G280 and G351 with the FOC (f/96+F430W, f/96+F480LP) while the WFPC2 (F555W,F814W) frames for G1,G58,G105,G108,G219+Bo468 were retrieved from the HST archive. The cluster metallicities -fe- range from -1.8 to -0.4. Coupled with sufficiently accurate (to $simpm0.1$ mag) measures of the mean brightness of the HB --vhb--, appropriate estimates of reddening for each cluster, and the adoption of a distance modulus to M31 of dmo = 24.43, this has allowed us to yield a direct calibration for the mean absolute magnitude of the HB at the instability strip --mv-- with varying fe: M_V^{HB} = (0.13 pm 0.07)fe + (0.95 pm 0.09), where the associated errors result from the adopted global errors in the measure and best fitting procedures. The slope of the derived relation is fully consistent with that predicted by the standard and canonical models ($sim0.15$) and obtained by various ground-based observations, while it is only marginally compatible with higher values ($sim0.30$), also obtained in the past. The zero-point, which is crucial to absolute age determinations, depends on the adopted distance to M31 and is moreover affected by an additional error due to the residual uncertainties in the hst photometric zero-points ($sim0.05$ mag, at least). If confirmed, such a calibration of the mv vs fe relationship would imply old absolute ages ($> 16$Gyr) for the oldest Galactic globulars and fairly small age spread among those having a constant magnitude difference between the Main-Sequence Turnoff and the HB.