Several classes of stars (most notably O and B main-sequence stars, as well as accreting white dwarfs and neutron stars) rotate quite rapidly, at spin frequencies greater than the typical g-mode frequencies. We discuss how rapid rotation modifies the $kappa$-mechanism excitation and observability of g-mode oscillations. We find that, by affecting the timescale match between the mode period and the thermal time at the driving zone, rapid rotation stabilizes some of the g-modes that are excited in a non-rotating star, and, conversely, excites g-modes that are damped in absence of rotation. The fluid velocities and temperature perturbations are strongly concentrated near the equator for most g-modes in rapidly rotating stars, which means that a favorable viewing angle may be required to observe the pulsations. Moreover, the stability of modes of the same $l$ but different $m$ is affected differently by rotation. We illustrate this by considering g-modes in Slowly Pulsating B-type stars as a function of the rotation rate.