Do you want to publish a course? Click here

Laboratory Measurement of the Pure Rotational Transitions of the HCNH+ and its Isotopic Species

73   0   0.0 ( 0 )
 Added by Mitsunori Araki
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

The pure rotational transitions of the protonated hydrogen cyanide ion, HCNH+, and its isotopic species, HCND+ and DCND+, were measured in the 107 - 482 GHz region with a source modulated microwave spectrometer. The ions were generated in the cell with a magnetically confined dc-glow discharge of HCN and/or DCN. The rotational constant B0 and the centrifugal distortion constant D0 for each ion were precisely determined by a least-squares fitting to the observed spectral lines. The observed rotational transition frequencies by laboratory spectroscopy and the predicted ones are accurate in about 30 to 40 kHz and are useful as rest frequencies for astronomical searches of HCNH+ and HCND+.



rate research

Read More

Methyl mercaptan (CH3SH) is a known interstellar molecule with abundances high enough that the detection of some of its minor isotopologues is promising. The present study aims at providing accurate spectroscopic parameters for the (13)CH3SH isotopologue to facilitate its identification in the interstellar medium at millimetre and submillimetre wavelengths. Through careful analysis of recent CH3SH spectra from 49-510 GHz and 1.1-1.5 THz recorded at natural isotopic composition, extensive assignments were possible not only for the ground torsional state of (13)CH3SH, but also in the first and second excited states. The torsion-rotation spectrum displays complex structure due to the large-amplitude internal rotation of the (13)CH3 group, similar to the main and other minor isotopic species of methyl mercaptan. The assigned transition frequencies have been fitted to within experimental error with a 52-parameter model employing the RAM36 programme. With predictions based on this fit, (13)CH3SH was searched for in spectra from the Atacama Large Millimetre/submillimetre Array (ALMA) towards the Galactic centre source Sgr B2(N2). Several transitions were expected to be observable, but all of them turned out to be severely blended with emission from other species, which prevents us from identifying (13)CH3SH in this source.
Methyl mercaptan (CH$_3$SH) is an important sulfur-bearing species in the interstellar medium, terrestrial environment, and potentially in planetary atmospheres. The aim of the present study is to provide accurate spectroscopic parameters for the most abundant minor isotopolog CH$_3$$^{34}$SH to support radio astronomical observations at millimeter and submillimeter wavelengths. The rotational spectrum of CH$_3$$^{34}$SH, which is complicated by the large-amplitude internal rotation of the CH$_3$ group versus the $^{34}$SH frame, was investigated in the 49$-$510 GHz and 1.1$-$1.5 THz frequency ranges in natural isotopic abundance. The analysis of the spectrum was performed up to the second excited torsional state, and the obtained data were modeled with the RAM36 program. A fit within experimental accuracy was obtained with a RAM Hamiltonian model that uses 72 parameters. Predictions based on this fit are used to search for CH$_3$$^{34}$SH with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the hot molecular core Sgr B2(N2), but blends with emission lines of other species prevent its firm identification in this source.
Thioformaldehyde is an abundant molecule in various regions of the interstellar medium. However, available laboratory data limit the accuracies of calculated transition frequencies in the submillimeter region, in particular for minor isotopic species. We aim to determine spectroscopic parameters of isotopologs of H2CS that are accurate enough for predictions well into the submillimeter region. We investigated the laboratory rotational spectra of numerous isotopic species in natural isotopic composition almost continuously between 110 and 377 GHz. Individual lines were studied for most species in two frequency regions between 566 and 930 GHz. Further data were obtained for the three most abundant species in the 1290-1390 GHz region. New or improved spectroscopic parameters were determined for seven isotopic species. Quantum-chemical calculations were carried out to evaluate the differences between ground state and equilibrium rotational parameters to derive semi-empirical equilibrium structural parameters. The spectroscopic parameters are accurate enough for predictions well above 1 THz with the exception of H2(13)C(34)S where the predictions should be reliable to around 700 GHz.
89 - G. Langston , B. Turner 2006
The $^{13}C$ substitutions of molecule $HC_7N$ were observed in TMC-1 using the J = 12 - 11, J = 13 - 12 rotational transitions in the frequency range 12.4 to 13.6 GHz. We present the first detection the $^{13}C$ isotopic species of $HC_7N$ in the interstellar medium, based on the average of a number of weak rotational transitions. This paper describes the calibration and data averaging process that is also used in a search for large cyanopolyyne molecules in TMC-1 using the 100m Robert C. Byrd Green Bank Telescope (GBT). The capabilities of the GBT 11 to 15 GHz observing system are described along with a discussion of numerical methods for averaging observations of a number of weak spectral lines to detect new interstellar molecules.
The rotational spectrum of silyl isocyanide (SiH$_3$NC), an isomer of the well studied silyl cyanide (SiH$_3$CN), has been detected in the laboratory in a supersonic molecular beam, and the identification was confirmed by observations of the corresponding rotational transitions in the rare isotopic species SiH$_3$$^{15}$NC and SiH$_3$N$^{13}$C. Spectroscopic constants derived from 19 transitions between $11 - 35$~GHz in the three lowest harmonically related rotational transitions in the $K = 0 ~{rm{and}}~1$ ladders of the normal isotopic species including the nitrogen nuclear quadrupole hyperfine constant, allow the principal astronomical transitions of SiH$_3$NC to be calculated to an uncertainty of about 4~km~s$^{-1}$ in equivalent radial velocity, or within the FWHM of narrow spectral features in the inner region of IRC+10216 near 200~GHz. The concentration of SiH$_3$NC in our molecular beam is three times less than SiH$_3$CN, or about the same as the corresponding ratio of the isomeric pair SiNC and SiCN produced under similar conditions. Silyl isocyanide is an excellent candidate for astronomical detection, because the spectroscopic and chemical properties are very similar to SiH$_3$CN which was recently identified in the circumstellar envelope of IRC+10216 by citet{cernicharo_discovery_2017} and of SiNC and SiCN in the same source.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا