We have used a sample of 15749 galaxies taken from the Las Campanas Redshift Survey to investigate the effects of environment on the rate of star formation (SFR) in galaxies. The size and homogeneity of this data set allows us to sample, for the first time, the entire range of galactic environment, from the voids to the clusters, in a uniform manner, thus, we could decouple the local galaxy density from the membership in associations. This decoupling is very crucial for constraining the physical processes responsible for the environmental dependencies of SFR. On the other hand, the use of an automatically-measured concentration index (C), rather than Hubble type, allows us to cleanly separate the morphological component from the SFR vs. environment relationship. We find that cluster galaxies exhibit lower SFR for the same C than field galaxies, while a further division of clusters by `richness reveals a new possible excitation of `starbursts in poor clusters. Meanwhile, a more general environmental investigation reveals that the SFR of a given C shows a continuous correlation with the local density. Interestingly, this trend is also observed both inside and outside of clusters, implying that physical processes responsible for this correlation might not be intrinsic to the cluster environment. On the other hand, galaxies with differing levels of SFR appear to respond differently to the local density. Low levels of SFR are more sensitive to environment inside than outside of clusters. In contrast, high levels of SFR, identified as ``starbursts, are as sensitive to local density in the field as in clusters. We conclude that at least two separate processes are responsible for the environmental sensitivity of the SFR.