No Arabic abstract
In an effort to model the observed energy spectrum of Cygnus X-1 as well as its hard X-ray lag by Comptonization in inhomogeneous clouds of hot electrons with spherical geometry and various radial density profiles we discovered that: 1) Plasma clouds with different density profiles will lead to different Comptonization energy spectra even though they have the same optical depth and temperature. On the other hand, clouds with different optical depths can produce the same energy spectra as long as their radial density distributions are properly chosen. Thus by fitting the energy spectrum alone, it is not possible to uniquely determine the optical depth of the Comptonization cloud, let alone its density structure. 2) The phase or time difference as a function of Fourier frequency or period for the X-rays in two energy bands is sensitive to the radial density distribution of the scattering cloud. Comptonization in plasma clouds with non-uniform density profiles can account for the long standing puzzle of the frequency-dependent hard X-ray lags of Cygnus X-1 and other sources. Thus simultaneously fitting the observed spectral and temporal X-ray properties will allow us to probe the density structure of the Comptonizing atmosphere and thereby the dynamics of mass accretion onto the compact object.
This paper has been withdrawn temporarily by the authors, because we are waiting for referee report of the paper submitted to ApJ.
X-ray shots of Cyg X-1 in different energy bands and spectral states have been studied with PCA/RXTE observations. The detailed shot structure is obtained by superposing many shots with one millisecond time bin through aligning their peaks with an improved algorithm. In general, the shots are composed of a slow rise and fast decay. The shot structures in the different states are different. The duration of shot in the high state is shorter than that in the low and transition states. The shot profile in the high energy band is more asymmetric and narrower than that in the low energy band. The average hardness of shot is lower than that of steady emission in the transition and low states but higher than that in the high state. The time lags between the shots in higher and lower energy bands have been found in the different states. In transition states, the time lag is the largest among the different states of Cyg X-1, and it is the smallest in the low state. The implications of the observed shot features for shot models are discussed.
We present the long term evolution of the timing properties of the black hole candidate Cygnus X-1 in the 0.002-128 Hz frequency range as monitored from 1998 to 2001 with the RXTE. The hard state power spectral density (PSD) is well modeled as the sum of four Lorentzians, which describe distinct broad noise components. Before 1998 July, Cyg X-1 was in a quiet hard state characterized primarily by the first three of these broad Lorentzians. Around 1998 May, this behavior changed: the total fractional rms amplitude decreased, the peak frequencies of the Lorentzians increased, the average time lag slightly increased, and the X-ray spectrum softened. The change in the timing parameters is mainly due to a strong decrease in the amplitude of the third Lorentzian. Since then, an unusually large number of X-ray flares have been observed. During these failed state transitions, the X-ray power spectrum changes to that of the intermediate state. Modeling this PSD with the four Lorentzians, we find that the first Lorentzian component is suppressed relative to the second and third Lorentzian. Also the frequency-dependent time lags increase significantly. We confirm the interpretation as failed state transitions with observations from the 2001 Jan. and 2001 Oct. soft states. Such behavior suggests that some or all of the Lorentzian components are associated with the accretion disk corona. We discuss the physical interpretation of our results.
We present model fits to the X-ray line spectrum of the well known High Mass X-ray binary Cyg X-3. The primary observational dataset is a spectrum taken with the $Chandra$ X-ray Observatory High Energy Transmission Grating (HETG) in 2006, though we compare it to all the other observations of this source taken so far by this instrument. We show that the density must be $geq 10^{12}$ cm$^{-3}$ in the region responsible for most of the emission. We discuss the influence of the dust scattering halo on the broad band spectrum and we argue that dust scattering and extinction is not the most likely origin for the narrow featureseen near the Si K edge. We identify the features of a wind in the profiles of the strong resonance lines and we show that the wind is more apparent in the lines from the lighter elements. We argue that this wind is most likely associated with the companion star. We show that the intensities of most lines can be fitted, crudely, by a single component photoionized model. However, the iron K lines do not fit with this model. We show that the iron K line variability as a function of orbital phase is different from the lower energy lines, which indicates that the lines arise in physically distinct regions. We discuss the interpretation of these results in the context of what is known about the system and similar sys
A linear dependence of the amplitude of broadband noise variability on flux for GBHC and AGN has been recently shown by Uttley & McHardy (2001). We present the long term evolution of this rms-flux-relation for Cyg X-1 as monitored from 1998-2002 with RXTE. We confirm the linear relationship in the hard state and analyze the evolution of the correlation for the period of 1996-2002. In the intermediate and the soft state, we find considerable deviations from the otherwise linear relationship. A possible explanation for the rms-flux-relation is a superposition of local mass accretion rate variations.