Do you want to publish a course? Click here

Bursting dwarf galaxies from the far-UV and deep surveys

205   0   0.0 ( 0 )
 Added by Michel Fioc
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

The far-ultraviolet (UV) counts and the deep optical spectroscopic surveys have revealed an unexpected number of very blue galaxies (vBG). Using constraints from the UV and optical, we apply the galaxy evolution model PEGASE (Fioc & Rocca-Volmerange 1997, hereafter FRV) to describe this population with a cycling star formation. When added to normally evolving galaxy populations, vBG are able to reproduce UV number counts and color distributions as well as deep optical redshift distributions fairly well. Good agreement is also obtained with optical counts (including the Hubble Deep Field). The number of vBG is only a small fraction of the number of normal galaxies, even at faintest magnitudes. In our modelling, the latter explain the bulk of the excess of faint blue galaxies in an open Universe. The problem of the blue excess remains in a flat Universe without cosmological constant.



rate research

Read More

Galaxy counts from bright ultraviolet (UV) and deep optical spectroscopic surveys have revealed an unexpectedly large number of very blue galaxies. The colors and luminosities of these objects indicate that they are dwarf galaxies undergoing bursts of star formation. We use a galaxy evolution model (PEGASE, Fioc & Rocca-Volmerange 1997) to describe this population as galaxies undergoing cyclical bursts of star formation, thereby determining the luminosity function of these galaxies. When these bursting galaxies are added to normally evolving populations, the combination reproduces the UV number counts, color distributions and deep optical redshift distributions fairly well. Optical (including the Hubble Deep Field) and near-infrared number counts are fitted assuming an open or a flat, Lambda-dominated, Universe. The high amplitude of the angular correlation function of very blue galaxies discovered by Landy et al. (1996) is also recovered in this modelling. The number of bursting galaxies is only a small fraction of the total number of galaxies at optical and near-infrared wavelengths, even at faintest magnitudes. In our evolution modelling, normal galaxies explain most of the blue excess in a low-Omega Universe. The problem of the blue excess remains in a flat Universe without a cosmological constant.
In this paper, we report on a first estimate of the contribution of galaxies to the diffuse extragalactic background from the far-UV to the submm, based on semi--analytic models of galaxy formation and evolution. We conclude that the global multi--wavelength picture seems to be consistent provided a quite important fraction of star--formation be hidden in dust--enshrouded systems at intermediate and high--redshift. We show that, according to such models, galaxies cannot stand as important contributors to the background hydrogen-ionizing flux at high-redshift unless neutral hydrogen absorption sites are clumpy and uncorrelated with star forming regions.We briefly discuss the robustness of such a result.
We combine wide and deep galaxy number-count data from GAMA, COSMOS/G10, HST ERS, HST UVUDF and various near-, mid- and far- IR datasets from ESO, Spitzer and Herschel. The combined data range from the far-UV (0.15microns) to far-IR (500microns), and in all cases the contribution to the integrated galaxy light (IGL) of successively fainter galaxies converges. Using a simple spline fit, we derive the IGL and the extrapolated-IGL in all bands. We argue undetected low surface brightness galaxies and intra-cluster/group light is modest, and that our extrapolated-IGL measurements are an accurate representation of the extra-galactic background light. Our data agree with most earlier IGL estimates and with direct measurements in the far-IR, but disagree strongly with direct estimates in the optical. Close agreement between our results and recent very high-energy experiments (H.E.S.S. and MAGIC), suggest that there may be an additional foreground affecting the direct estimates. The most likely culprit could be the adopted Zodiacal light model. Finally we use a modified version of the two-component model to integrate the EBL and obtain measurements of the Cosmic Optical Background (COB) and Cosmic Infrared Background (CIB) of: $24^{+4}_{-4}$nWm$^{-2}$sr$^{-1}$ and $26^{+5}_{-5}$nWm$^{-2}$sr$^{-1}$ respectively (48:52%). Over the next decade, upcoming space missions such as Euclid and WFIRST, have the capacity to reduce the COB error to $<1%$, at which point comparisons to the very high energy data could have the potential to provide a direct detection and measurement of the reionisation field.
109 - D. Schaerer 2019
Understanding the ionizing spectrum of low-metallicity galaxies is of great importance for modeling and interpreting emission line observations of early/distant galaxies. Although a wide suite of stellar evolution, atmosphere, population synthesis, and photoionization models, taking many physical processes into account now exist, all models face a common problem: the inability to explain the presence of nebular HeII emission, which is observed in many low metallicity galaxies, both in UV and optical spectra. Several possible explanations have been proposed in the literature, including Wolf-Rayet (WR) stars, binaries, very massive stars, X-ray sources, or shocks. However, none has so far been able to explain the major observations. We briefly discuss the HeII problem, available empirical data, and observed trends combining X-ray, optical and other studies. We present a simple and consistent physical model showing that X-ray binaries could explain the long-standing nebular HeII problem. Our model, described in Schaerer et al. (2019), successfully explains the observed trends and strength of nebular HeII emission in large samples of low metallicity galaxies and in individual galaxies, which have been studied in detail and with multi-wavelength observations. Our results have in particular important implications for the interpretation of galaxy spectra in the early Universe, which will be obtained with upcoming and future facilities.
71 - H. C. Ferguson 1996
Much of the far-UV emission from elliptical galaxies is thought to arise from extreme horizontal branch stars and related objects. Only about 10% of the stellar population needs to evolve through this phase even in galaxies with the strongest UV upturn. However it is not yet clear if this population represents the extreme low-metallicity or high-metallicty tail of the distribution, or rather arises from the overall population through some metallicity-insensitive mechanism that causes increased mass loss in a small fraction of RGB stars. We investigate the utility of far-UV line strengths for deciding between these possiblities. Complications include the fact that the line strengths reflect both the temperature distribution and the metallicity distribution of the stars, that there may be abundance anomalies introduced on the RGB, and that metals are likely to be redistributed by gravitational settling and radiative diffusion in the atmospheres of hot high-gravity stars. Line-strength measurements from Astro-2 HUT spectra are considered in this context.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا