Do you want to publish a course? Click here

A BeppoSAX observation of the super-soft source CAL87

152   0   0.0 ( 0 )
 Added by Arvind Parmar
 Publication date 1997
  fields Physics
and research's language is English
 Authors A. N. Parmar




Ask ChatGPT about the research

We report on a BeppoSAX Concentrator Spectrometer observation of the super-soft source (SSS) CAL87. The X-ray emission in SSS is believed to arise from nuclear burning of accreted material on the surface of a white dwarf (WD). An absorbed blackbody spectral model gives a chi^2_v of 1.18 and a temperature of 42 +/- ^13 _11 eV. However, the derived luminosity and radius are greater than the Eddington limit and radius of a WD. Including an O viii edge at 0.871 keV gives a significantly better fit (at > 95% confidence) and results in more realistic values of the source luminosity and radius. We also fit WD atmosphere models to the CAL87 spectrum. These also give reasonable bolometric luminosities and radii in the ranges 2.7-4.8 10^{36} erg/s and 8-20 10^7 cm, respectively. These results support the view that the X-ray emission from CAL87 results from nuclear burning in the atmosphere of a WD.



rate research

Read More

56 - A. N. Parmar 1997
We report on a BeppoSAX Low-Energy Concentrator Spectrometer (LECS) observation of the super-soft source (SSS) CAL83. The X-ray emission in SSS is believed to arise from nuclear burning of accreted material on the surface of a white dwarf (WD). The LECS spectrum of CAL83 can be well fit by both absorbed blackbody and WD atmosphere models. If the absorption is constrained to be equal to the value derived from Hubble Space Telescope measurements, then the best-fit blackbody temperature is 46.4 +/- 1.4 eV while a Non Local Thermal Equilibrium (NLTE) WD atmosphere model gives a lower temperature of 32.6 +/- 0.7 eV. In contrast to CAL87, there are no strong absorption edges visible in the X-ray spectrum with a 68% confidence upper limit of 2.3 to the optical depth of a Cvi edge at 0.49 keV predicted by WD atmosphere models. The luminosity and radius derived from the NLTE fit are consistent with the values predicted for stable nuclear burning on the surface of a ~0.9-1.0 solar mass WD.
105 - Marco Feroci 2003
In this paper I will briefly review what are, in my view, the main contributions of BeppoSAX to the understanding of the class of sources known as Soft Gamma Repeaters. These enigmatic sources were firmly identified as steady pulsars just during the operating lifetime of BeppoSAX. All the instruments onboard BeppoSAX have at some level contributed in this field with specific observations, always allowing high quality - sometimes unprecedented - studies of the quiescent counterparts or the bursting behavior of these sources. I will try to stress the results that were uniquely achieved by BeppoSAX and identify their impact on the knowledge of the physics at work in these sources.
We have used the BeppoSAX satellite to study the broad band (0.5-100 keV) X-ray spectrum of the Seyfert 1.5 galaxy MKN6. The source is characterized by a power law of Gamma=1.7 [+0.08, -0.07] and there is no strong evidence for either a reflection bump or a high energy cut-off. We have detected a narrow iron line at 6.4 keV (rest frame) with an equivalent width of 98 [+33, -35] eV. MKN6 also exhibits strong and complex absorption. At least two components (NH_1 =1.34 [+0.4,-0.4] x 10^(22) cm^(-2) and NH_2 = 4.18 [+2.2, -1.3] x 10^(22) cm^(-2)) are present and they both partially cover the source with covering fractions of ~90% and ~50% respectively. Comparison with a previous ASCA observation indicates that in both absorbing columns the NH is variable over a 2 year timescale, while the covering fractions are constant over the same amount of time. The state of each absorber is cold or mildly photoionized. The Broad Line Region (BLR) is suggested as the possible location for this complex absorption.
V4743 Sgr (Nova Sgr 2002 No. 3) was discovered on 20 September 2002. We obtained a 5ks ACIS-S spectrum in November 2002 and found that the nova was faint in X-rays. We then obtained a 25ks CHANDRA LETGS observation on 19 March 2003. By this time, it had evolved into the Super Soft X-ray phase exhibiting a continuous spectrum with deep absorption features. The light curve from the observation showed large amplitude oscillations with a period of 1325s (22min) followed by a decline in total count rate after ~13ks of observations. The count rate dropped from ~40cts/s to practically zero within ~6ks and stayed low for the rest of the observation (~6ks). The spectral hardness ratio changed from maxima to minima in correlation with the oscillations, and then became significantly softer during the decay. Strong H-like and He-like lines of oxygen, nitrogen, and carbon were found in absorption during the bright phase, indicating temperatures between 1-2MK, but they were shifted in wavelength corresponding to a Doppler velocity of -2400km/s. The spectrum obtained after the decline in count rate showed emission lines of CVI, NVI, and NVII suggesting that we were seeing expanding gas ejected during the outburst, probably originating from CNO-cycled material. An XMM-Newton ToO observation, obtained on 4 April 2003 and a later LETGS observation from 18 July 2003 also showed oscillations, but with smaller amplitudes.
We present an analysis of BeppoSAX observations of the IC1262 galaxy cluster and report the first temperature and abundance measurements, along with preliminary indications of diffuse, nonthermal emission. By fitting a 6 (~360 h_50^-1 kpc) region with a single Mewe-Kaastra-Liedahl model with photoelectric absorption, we find a temperature of 2.1 - 2.3 keV, and abundance of 0.45 - 0.77 (both 90% confidence). We find the addition of a power-law component provides a statistically significant improvement (F-test = 90%) to the fit. The addition of a second thermal component also improves the fit but we argue that it is physically implausible. The power-law component has a photon index (Gamma_X) of 0.4 - 2.8 and a nonthermal flux of (4.1 - 56.7) x 10-5 photons cm^-2 s^-1 over the 1.5 - 10.5 keV range in the Medium Energy Concentrator spectrometer detector. An unidentified X-ray source found in the ROSAT High Resolution Imager observation (~0.9 from the center of the cluster) is a possible explanation for the nonthermal flux; however, additional evidence of diffuse, nonthermal emission comes from the NRAO VLA Sky Survey and the Westerbork Northern Sky Survey radio measurements, in which excess diffuse, radio flux is observed after point-source subtraction. The radio excess can be fitted to a simple power law with a spectral index of ~1.8, which is consistent with the nonthermal X-ray emission spectral index. The steep spectrum is typical of diffuse emission and the size of the radio source implies that it is larger than the cD galaxy and not due to a discreet source.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا