No Arabic abstract
We describe a search of archival data from the Burst and Transient Source Experiment (BATSE). The purpose of the search is to find astronomically interesting transients that did not activate the burst detection (or ``trigger) system onboard the spacecraft. Our search is sensitive to events with peak fluxes (on the 1.024 s time scale) that are lower by a factor of 2 than can be detected with the onboard burst trigger. In a search of 345 days of archival data, we detected 91 events in the 50--300 keV range that resemble classical gamma ray bursts but that did not activate the onboard burst trigger. We also detected 110 low-energy (25--50 keV) events of unknown origins which may include activity from SGR 1806-20 and bursts and flares from X-ray binaries. This paper gives the occurrence times, estimated source directions, durations, peak fluxes, and fluences for the 91 gamma ray burst candidates. The direction and intensity distributions of these bursts imply that the biases inherent in the onboard trigger mechanism have not significantly affected the completeness of the published BATSE gamma ray burst catalogs.
The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detected gamma-ray bursts (GRBs) with a real-time burst detection (or trigger) system running onboard the spacecraft. Under some circumstances, however, a GRB may not have activated the onboard burst trigger. For example, the burst may have been too faint to exceed the onboard detection threshold, or it may have occurred while the onboard burst trigger was disabled for technical reasons. This paper describes a catalog of 873 non-triggered GRBs that were detected in a search of the archival continuous data from BATSE, recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25--50 keV range; these events may represent the low-energy tail of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.
We have recently completed a search of 6 years of archival BATSE data for gamma-ray bursts (GRBs) that were too faint to activate the real-time burst detection system running onboard the spacecraft. These non-triggered bursts can be combined with the triggered bursts detected onboard to produce a GRB intensity distribution that reaches peak fluxes a factor of 2 lower than could be studied previously. The value of the V/Vmax statistic (in Euclidean space) for the bursts we detect is 0.177 +/- 0.006. This surprisingly low value is obtained because we detected very few bursts on the 4.096 s and 8.192 s time scales (where most bursts have their highest signal-to-noise ratio) that were not already detected on the 1.024 s time scale. If allowance is made for a power-law distribution of intrinsic peak luminosities, the extended peak flux distribution is consistent with models in which the redshift distribution of the gamma-ray burst rate approximately traces the star formation history of the Universe. We argue that this class of models is preferred over those in which the burst rate is independent of redshift. We use the peak flux distribution to derive a limit of 10% (99% confidence) on the fraction of the total burst rate that could be contributed by a spatially homogeneous (in Euclidean space) subpopulation of burst sources, such as type Ib/c supernovae. These results lend support to the conclusions of previous studies predicting that relatively few faint classical GRBs will be found below the BATSE onboard detection threshold.
The possibility that classical gamma ray bursts (GRB) occasionally repeat from the same locations on the sky provides a critical test of GRB models. There is currently some controversy about whether there is evidence for burst repetition in the BATSE data. We introduce a gamma ray burst ``pair matching statistic that can be used to search for a repeater signal in the BATSE data. The pair matching statistic is built upon the reported position errors for each burst and is more sensitive than previously used statistics at detecting faint repeating bursts or multiple burst recurrences. It is also less likely to produce (false) evidence of burst repetition due to correlations in the positions that are inconsistent with repeating bursters. We find that the excesses in ``matched and ``antipodal pairs seen with other statistics are caused by an excess of pairs with a separation smaller than their error bars would indicate. When we consider all separations consistent with the error bars, no significant signal remains. We conclude that the publicly available BATSE 1B and 2B data sets contain no evidence for repeating gamma ray bursters.
The detection of six Fast Radio Bursts (FRBs) has recently been reported. FRBs are short duration ($sim$ 1 ms), highly dispersed radio pulses from astronomical sources. The physical interpretation for the FRBs remains unclear but is thought to involve highly compact objects at cosmological distance. It has been suggested that a fraction of FRBs could be physically associated with gamma-ray bursts (GRBs). Recent radio observations of GRBs have reported the detection of two highly dispersed short duration radio pulses using a 12 m radio telescope at 1.4 GHz. Motivated by this result, we have performed a systematic and sensitive search for FRBs associated with GRBs. We have observed five GRBs at 2.3 GHz using a 26 m radio telescope located at the Mount Pleasant Radio Observatory, Hobart. The radio telescope was automated to rapidly respond to Gamma-ray Coordination Network notifications from the Swift satellite and slew to the GRB position within $sim$ 140 s. The data were searched for pulses up to 5000 pc $rm cm^{-3}$ in dispersion measure and pulse widths ranging from 640 $rm mu$s to 25.60 ms. We did not detect any events $rm geq 6 sigma$. An in-depth statistical analysis of our data shows that events detected above $rm 5 sigma$ are consistent with thermal noise fluctuations only. A joint analysis of our data with previous experiments shows that previously claimed detections of FRBs from GRBs are unlikely to be astrophysical. Our results are in line with the lack of consistency noted between the recently presented FRB event rates and GRB event rates.
We present an all-sky search for muon neutrinos produced during the prompt $gamma$-ray emission of 1172 gamma-ray bursts (GRBs) with the IceCube Neutrino Observatory. The detection of these neutrinos would constitute evidence for ultra-high energy cosmic ray (UHECR) production in GRBs, as interactions between accelerated protons and the prompt $gamma$-ray field would yield charged pions, which decay to neutrinos. A previously reported search for muon neutrino tracks from Northern Hemisphere GRBs has been extended to include three additional years of IceCube data. A search for such tracks from Southern Hemisphere GRBs in five years of IceCube data has been introduced to enhance our sensitivity to the highest energy neutrinos. No significant correlation between neutrino events and observed GRBs is seen in the new data. Combining this result with previous muon neutrino track searches and a search for cascade signature events from all neutrino flavors, we obtain new constraints for single-zone fireball models of GRB neutrino and UHECR production.