Do you want to publish a course? Click here

Dark Matter and Baryon Fraction at the Virial Radius in Abell 2256

72   0   0.0 ( 0 )
 Added by Maxim Markevitch
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

We combine ASCA and ROSAT X-ray data to constrain the radial dark matter distribution in the primary cluster of A2256, free from the isothermality assumption. Both instruments indicate that the temperature declines with radius. The region including the central galaxy has a multicomponent spectrum, which results in a wide range of allowed central temperatures. We find that the secondary subcluster has a temperature and luminosity typical of a rich cluster; however, the ASCA temperature map shows no signs of an advanced merger. It is therefore assumed that the primary cluster is in hydrostatic equilibrium. The data then require dark matter density profiles steeper than rho ~ r^-2.5 in its outer part. Acceptable models have a total mass within r=1.5 Mpc (the virial radius) of 6.0+-1.5 10^14 Msun at the 90% confidence, about 1.6 times smaller than the mass derived assuming isothermality. Near the center, dark matter profiles with and without central cusps are consistent with the data. Total mass inside the X-ray core (r=0.26 Mpc) is 1.28+-0.08 10^14 Msun, which exceeds the isothermal value by a factor of 1.4. Although the confidence intervals above may be underestimates since they do not include possible asymmetry and departures from hydrostatic equilibrium, the behavior of the mass distribution, if applicable to other clusters, can bring into better agreement X-ray and lensing mass estimates, but aggravate the ``baryon catastrophe. The observed considerable increase in the gas content with radius, not anticipated by simulations, may imply that a significant fraction of thermal gas energy comes from sources other than gravity and merger shocks.



rate research

Read More

105 - David A. Buote 2016
In this second paper on the entire virial region of the relaxed fossil cluster RXJ1159+5531, we present a hydrostatic analysis of the hot intracluster medium (ICM). For a model consisting of ICM, stellar mass from the central galaxy (BCG), and an NFW dark matter (DM) halo, we obtain good descriptions of the projected radial profiles of ICM emissivity and temperature. The BCG stellar mass is clearly detected with M_star/L_K = 0.61 +/- 0.11 solar, consistent with stellar population synthesis models for a Milky-Way IMF. We obtain a halo concentration, c_200 =8.4 +/- 1.0, and virial mass, M_200 = 7.9 +/- 0.6 x 10^13 M_sun. For its mass, the inferred concentration is larger than most relaxed halos produced in cosmological simulations with Planck parameters, consistent with RXJ1159+5531 forming earlier than the general halo population. The baryon fraction at r_200, f_b,200 = 0.134 +/- 0.007, is slightly below the Planck value (0.155) for the universe. When we account for the stellar baryons associated with non-central galaxies and the uncertain intracluster light, f_b,200 increases by ~0.015, consistent with the cosmic value. Performing our analysis in the context of MOND still requires a large DM fraction (85.0% +/- 2.5% at r=100 kpc) similar to that obtained using the standard Newtonian approach. The detection of a plausible stellar BCG mass component distinct from the NFW DM halo in the total gravitational potential suggests that ~10^14 M_sun represents the mass scale above which dissipation is unimportant in the formation of the central regions of galaxy clusters. (Abridged)
In a serie of three papers, the dynamical interplay between environments and dark matter haloes is investigated, while focussing on the dynamical flows through their virial sphere. Our method relies on both cosmological simulations, to constrain the environments, and an extension to the classical matrix method to derive the response of the halo (see Pichon & Aubert (2006), paper I). The current paper focuses on the statistical characterisation of the environments surrounding haloes, using a set of large scale simulations. Our description relies on a `fluid halocentric representation where the interactions between the halo and its environment are investigated in terms of a time dependent external tidal field and a source term characterizing the infall. The method is applied to 15000 haloes, with masses between 5 x 10^12 Ms and 10^14 Ms evolving between z = 1 and z = 0. The net accretion at the virial radius is found to decrease with time, resulting from both an absolute decrease of infall and from a growing contribution of outflows. Infall is found to be mainly radial and occurring at velocities ~ 0.75 V200. Outflows are also detected through the virial sphere and occur at lower velocities ~ 0.6 V200 on more circular orbits. The external tidal field is found to be strongly quadrupolar and mostly stationnary, possibly reflecting the distribution of matter in the halos near environment. The coherence time of the small scale fluctuations of the potential hints a possible anisotropic distribution of accreted satellites. The flux density of mass on the virial sphere appears to be more clustered than the potential while the shape of its angular power spectrum seems stationnary.
64 - Gary A. Mamon IAP , Paris 2004
Elliptical galaxies are modelled with a a 4-component model: Sersic stars, LCDM dark matter (DM), hot gas and central black hole. DM is negligible in the inner regions, which are dominated by stars and the central black hole. This prevents any kinematical estimate (using a Jeans analysis) of the inner slope of the DM density profile. The gas fraction rises, but the baryon fraction decreases with radius, at least out to 10 effective radii (R_e). Even with line-of-sight velocity dispersion (VD) measurements at 4 to 6 R_e with 20 km/s accuracy and perfectly known velocity anisotropy, the total mass within the virial radius (r_v) is uncertain by a factor over 3. The DM distributions found in LCDM simulations are consistent with the stellar VD profiles, but appear inconsistent with the low VDs measured by Romanowsky et al. (2003) of planetary nebulae between 2 and 5 R_e, which imply such low M/Ls that the baryon fraction within r_v must be greater than the universal value. Replacing the NFW DM model by the new model of Navarro et al. (2004) decreases slightly the VD at a given radius. So, given the observed VD measured at 5 R_e, the inferred M/L within r_v is 40% larger than predicted with the NFW model. Folding in the slight (strong) radial anisotropy found in LCDM (merger) simulations, which is well modelled (much better than with the Osipkov-Merritt formula) with beta(r) = 1/2 r/(r+a), the inferred M/L within r_v is another 1.6 (2.4) times higher than for the isotropic NFW model. Thus, the DM model and radial anisotropy can partly explain the low PN VDs, but not in full. In an appendix, single integral expressions are derived for the VDs in terms of the tracer density and total mass profiles, for 3 anisotropic models: radial, Osipkov-Merritt, and the model above, for general radial profiles of luminosity density and mass.
We report the first Chandra detection of emission out to the virial radius in the cluster Abell 1835 at z=0.253. Our analysis of the soft X-ray surface brightness shows that emission is present out to a radial distance of 10 arcmin or 2.4 Mpc, and the temperature profile has a factor of ten drop from the peak temperature of 10 keV to the value at the virial radius. We model the Chandra data from the core to the virial radius and show that the steep temperature profile is not compatible with hydrostatic equilibrium of the hot gas, and that the gas is convectively unstable at the outskirts. A possible interpretation of the Chandra data is the presence of a second phase of warm-hot gas near the clusters virial radius that is not in hydrostatic equilibrium with the clusters potential. The observations are also consistent with an alternative scenario in which the gas is significantly clumped at large radii.
273 - Tracy E. Clarke 2011
Abell 2256 is a rich, nearby (z=0.0594) galaxy cluster that has significant evidence of merger activity. We present new radio and X-ray observations of this system. The low-frequency radio images trace the diffuse synchrotron emission of the Mpc-scale radio halo and relics as well as a number of recently discovered, more compact, steep spectrum sources. The spectral index across the relics steepens from the north-west toward the south-east. Analysis of the spectral index gradients between low and and high-frequencies shows spectral differences away from the north-west relic edge such that the low-frequency index is significantly flatter than the high frequency spectral index near the cluster core. This trend would be consistent with an outgoing merger shock as the origin of the relic emission. New X-ray data from XMM-Newton reveal interesting structures in the intracluster medium pressure, entropy and temperature maps. The pressure maps show an overall low pressure core co-incident with the radio halo emission, while the temperature maps reveal multiple regions of cool emission within the central regions of Abell 2256. The two cold fronts in Abell 2256 both appear to have motion in similar directions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا