Do you want to publish a course? Click here

A complete sample of quasars from the 7C redshift survey

60   0   0.0 ( 0 )
 Added by Chris Willott
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present details of a new sample of radio-loud quasars drawn from 0.013 sr of the 7C Redshift Survey. This sample is small (21 quasars) but complete in that every object with an unresolved nucleus and/or broad emission lines with S(151MHz) > 0.5 Jy has been discovered. The dependence of the quasar fraction with redshift and radio luminosity is investigated, providing new evidence supporting the unification of radio-loud quasars and powerful radio galaxies. This 7C sample is compared with optically-selected quasars, in order to determine whether there are systematic biases in the different selection techniques. There are no lightly reddened (Av approx. 1) quasars in our sample amongst the 14 with z < 2. The discovery of a reddened quasar at z = 2.034 and its implications are discussed. A tight correlation between radio luminosity and optical/near infrared continuum luminosity for a subset of the sample is also found.



rate research

Read More

We present the results of a new, deeper, and complete search for high-redshift $6.5<z<9.3$ quasars over 977deg$^2$ of the VISTA Kilo-Degree Infrared Galaxy (VIKING) survey. This exploits a new list-driven dataset providing photometry in all bands ZYJHKs, for all sources detected by VIKING in $J$. We use the Bayesian model comparison (BMC) selection method of Mortlock et al., producing a ranked list of just 21 candidates. The sources ranked 1, 2, 3 and 5 are the four known $z>6.5$ quasars in this field. Additional observations of the other 17 candidates, primarily DESI Legacy Survey photometry and ESO FORS2 spectroscopy, confirm that none is a quasar. This is the first complete sample from the VIKING survey, and we provide the computed selection function. We include a detailed comparison of the BMC method against two other selection methods: colour cuts and minimum-$chi^2$ SED fitting. We find that: i) BMC produces eight times fewer false positives than colour cuts, while also reaching 0.3 mag. deeper, ii) the minimum-$chi^2$ SED fitting method is extremely efficient but reaches 0.7 mag. less deep than the BMC method, and selects only one of the four known quasars. We show that BMC candidates, rejected because their photometric SEDs have high $chi^2$ values, include bright examples of galaxies with very strong [OIII]$lambdalambda$4959,5007 emission in the $Y$ band, identified in fainter surveys by Matsuoka et al. This is a potential contaminant population in Euclid searches for faint $z>7$ quasars, not previously accounted for, and that requires better characterisation.
247 - L. A. Lopez 2006
We present the results of Chandra ACIS-S snapshot observations of six radio-loud quasars (RLQs) at z=3.5-4.7. These observations sample luminous RLQs with moderate-to-high radio-loudness (R=200-9600) and aim to connect the X-ray properties of radio-quiet quasars (R<10) and highly radio-loud blazars (R>1000) at high redshift. This work extends a study by Bassett et al. (2004) which used similar methods to examine z > 4 RLQs with moderate radio-loudness (R=40-400). All of our targets are clearly detected. A search for extended X-ray emission associated with kpc-scale radio jets revealed only limited evidence for X-ray extension in our sample: three sources showed no evidence of X-ray extension, and the other three had 3-30% of their total X-ray fluxes extended >1 arcsec away from their X-ray cores. Additionally, we do not observe any systematic flattening of the optical-to-X-ray spectral index (alpha_{ox}) compared to low-redshift quasars. These results suggest that kpc-scale X-ray jet emission is not dominated by inverse-Compton scattering of CMB-seed photons off jet electrons. We measured X-ray continuum shapes and performed individual and joint spectral fits of our data combined with eight archival RLQs. A single power-law model acceptably fit the data. We added an intrinsic absorption component to our model, and neither the moderate-R nor the high-R fits set a lower bound on N_H. Our spectral results suggest that intrinsic absorption does not strongly depend on radio-loudness, and high-R sources have flatter power laws than moderate-R sources. Overall, our high-redshift RLQs have basic X-ray properties consistent with similar RLQs in the local universe.
We report on the diversity in quasar spectra from the Baryon Oscillation Spectroscopic Survey. After filtering the spectra to mitigate selection effects and Malmquist bias associated with a nearly flux-limited sample, we create high signal-to-noise ratio composite spectra from 58,656 quasars (2.1 le z le 3.5), binned by luminosity, spectral index, and redshift. With these composite spectra, we confirm the traditional Baldwin effect (BE, i.e., the anticorrelation of C IV equivalent width (EW) and luminosity) that follows the relation W_lambda propto L^{beta_w} with slope beta_w = -0.35 pm 0.004, -0.35 pm 0.005, and -0.41 pm 0.005 for z = 2.25, 2.46, and 2.84, respectively. In addition to the redshift evolution in the slope of the BE, we find redshift evolution in average quasar spectral features at fixed luminosity. The spectroscopic signature of the redshift evolution is correlated at 98% with the signature of varying luminosity, indicating that they arise from the same physical mechanism. At a fixed luminosity, the average C IV FWHM decreases with increasing redshift and is anti-correlated with C IV EW. The spectroscopic signature associated with C IV FWHM suggests that the trends in luminosity and redshift are likely caused by a superposition of effects that are related to black hole mass and Eddington ratio. The redshift evolution is the consequence of a changing balance between these two quantities as quasars evolve toward a population with lower typical accretion rates at a given black hole mass.
46 - M.J. Drinkwater 2000
The Fornax Spectroscopic Survey will use the Two degree Field spectrograph (2dF) of the Anglo-Australian Telescope to obtain spectra for a complete sample of all 14000 objects with 16.5<=Bj<=19.7 in a 12 square degree area centred on the Fornax Cluster. By selecting all objects---both stars and galaxies---independent of morphology, we cover a much larger range of surface brightness and scale size than previous surveys. In this paper we present results from the first 2dF field. Redshift distributions and velocity structures are shown for all observed objects in the direction of Fornax, including Galactic stars, galaxies in and around the Fornax Cluster, and for the background galaxy population. The velocity data for the stars show the contributions from the different Galactic components, plus a small tail to high velocities. We find no galaxies in the foreground to the cluster in our 2dF field. The Fornax Cluster is clearly defined kinematically. The mean velocity from the 26 cluster members having reliable redshifts is 1560+/-80 km/s. They show a velocity dispersion of 380+/-50 km/s. Large-scale structure can be traced behind the cluster to a redshift beyond z=0.3. Background compact galaxies and low surface brightness galaxies are found to follow the general galaxy distribution.
112 - Ohad Shemmer 2006
We present new Chandra observations of 21 z>4 quasars, including 11 sources at z>5. These observations double the number of X-ray detected quasars at z>5, allowing investigation of the X-ray spectral properties of a substantial sample of quasars at the dawn of the modern Universe. By jointly fitting the spectra of 15 z>5 radio-quiet quasars (RQQs), including sources from the Chandra archive, with a total of 185 photons, we find a mean X-ray power-law photon index of Gamma=1.95^{+0.30}_{-0.26}, and a mean neutral intrinsic absorption column density of N_H<~6x10^{22} cm^{-2}. These results show that quasar X-ray spectral properties have not evolved up to the highest observable redshifts. We also find that the mean optical-X-ray spectral slope (alpha_ox) of optically-selected z>5 RQQs, excluding broad absorption line quasars, is alpha_ox=-1.69+/-0.03, which is consistent with the value predicted from the observed relationship between alpha_ox and ultraviolet luminosity. Four of the sources in our sample are members of the rare class of weak emission-line quasars, and we detect two of them in X-rays. We discuss the implications our X-ray observations have for the nature of these mysterious sources and, in particular, whether their weak-line spectra are a consequence of continuum boosting or a deficit of high-ionization line emitting gas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا