We present time-resolved HST UV spectroscopy and ground-based optical photometry of the dwarf nova IP Peg in a quiescent state. The observations were obtained prior to an eclipse, when the bright spot caused by the impact of the accretion stream with the edge of the disk dominates the light output. The optical light curve is strongly correlated with the UV spectrophotometric flux curve. An emission-like feature near 1820 A in the UV spectrum is likely to be a manifestation of the ``Fe II curtain. Composite spectra constructed from the peaks and troughs of flickers in the light curve show substantial differences. The spectrum of the flickers is not adequately modelled by a simple blackbody, suggesting that a more sophisticated model is appropriate. We perform a cross-correlation analysis of the variability in spectrophotometric flux curves of the UV continuum and prominent UV emission lines (C II 1335, Si IV 1400, C IV 1550). The continuum and lines are not correlated, suggesting that they are produced separately. The C II and Si IV lines are moderately correlated with each other, but neither line is correlated with C IV, suggesting that the latter forms in a different region than the former. We briefly discuss a qualitative model for the geometry of the emission regions in IP Peg that is consistent with the observed behavior of the UV lines and continuum.