Do you want to publish a course? Click here

Viscosity in Selfgravitating Accretion Disks

97   0   0.0 ( 0 )
 Added by Wolfgang Duschl
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the standard model for geometrically thin accretion disks (alpha-disks) leads to inconsistencies if selfgravity plays a role. This problem arises from the parametrization of viscosity in terms of local sound velocity and vertical disk scale height. A viscosity prescription based on turbulent flows at the critical effective Reynolds number allows for consistent models of thin selfgravitating disks, and recovers the alpha-disk solution as the limiting case of negligible selfgravity. We suggest that such selfgravitating disks may explain the observed spectra of protoplanetary disks and yield a natural explanation for the radial motions inferred from the observed metallicity gradients in disk galaxies.



rate research

Read More

We propose a generalized accretion disk viscosity prescription based on hydrodynamically driven turbulence at the critical effective Reynolds number. This approach is consistent with recent re-analysis by Richard & Zahn (1999) of experimental results on turbulent Couette-Taylor flows. This new $beta$-viscosity formulation is applied to both selfgravitating and non-selfgravitating disks and is shown to yield the standard $alpha$-disk prescription in the case of shock dissipation limited, non-selfgravitating disks. A specific case of fully selfgravitating $beta$-disks is analyzed. We suggest that such disks may explain the observed spectra of protoplanetary disks and yield a natural explanation for the radial motions inferred from the observed metallicity gradients in disk galaxies. The $beta$-mechanism may also account for the rapid mass transport required to power ultra luminous infrared galaxies.
We present a non-linear numerical model for a geometrically thin accretion disk with the addition of stochastic non-linear fluctuations in the viscous parameter. These numerical realizations attempt to study the stochastic effects on the disk angular momentum transport. We show that this simple model is capable of reproducing several observed phenomenologies of accretion driven systems. The most notable of these is the observed linear rms-flux relationship in the disk luminosity. This feature is not formally captured by the linearized disk equations used in previous work. A Fourier analysis of the dissipation and mass accretion rates across disk radii show coherence for frequencies below the local viscous frequency. This is consistent with the coherence behavior observed in astrophysical sources such as Cygnus X-1.
We aim to illustrate the role of hot protons in enhancing the magnetorotational instability (MRI) via the ``hybrid viscosity, which is due to the redirection of protons interacting with static magnetic field perturbations, and to establish that it is the only relevant mechanism in this situation. It has recently been shown by Balbus cite{PBM1} and Islam & Balbus cite{PBM11} using a fluid approach that viscous momentum transport is key to the development of the MRI in accretion disks for a wide range of parameters. However, their results do not apply in hot, advection-dominated disks, which are collisionless. We develop a fluid picture using the hybrid viscosity mechanism, that applies in the collisionless limit. We demonstrate that viscous effects arising from this mechanism can significantly enhance the growth of the MRI as long as the plasma $beta gapprox 80$. Our results facilitate for the first time a direct comparison between the MHD and quasi-kinetic treatments of the magnetoviscous instability in hot, collisionless disks.
The study of the stability of massive gaseous disks around a star in a non-isolated context is not a trivial issue and becomes a more complicated task for disks hosted by binary systems. The role of self-gravity is thought to be significant, whenever the ratio of the disk to the star mass is non-negligible. To tackle these issues we implemented, tested and applied our own Smoothed Particle Hydrodynamics (SPH) algorithm. The code (named GaSPH) passed various quality tests and shows good performances, so to be reliably applied to the study of disks around stars accounting for self-gravity. This work aims to introduce and describe the algorithm, making some performance and stability tests. It constitutes the first part of a series of studies in which self-gravitating disks in binary systems will be let evolve in larger environments such as Open Clusters.
An accretion flow onto a supermassive black hole is the primary process powering quasars. However, a geometry of this flow is not well constrained. Both global MHD simulations and observations suggest that there are several emission components present in the nucleus: an accretion disk, hot plasma (corona or sphere) with electrons scattering the optical and UV photons, and an outflow (wind/jet). The relative location and size of these emission components, as well as their interplay affect the emerging quasar spectrum. I review briefly standard accretion disk models and the recent progress, point out discrepancies between the predicted and observed spectra and discuss some issues in fitting these models to the broad-band spectral energy distribution of quasars. I present examples of models fitted simultaneously to the optical-UV-X-ray data and possible constraints on the parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا