Do you want to publish a course? Click here

The Quadruple Gravitational Lens PG1115+080: Time Delays and Models

96   0   0.0 ( 0 )
 Added by Paul L. Schechter
 Publication date 1996
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical photometry is presented for the quadruple gravitational lens PG1115+080. A preliminary reduction of data taken from November 1995 to June 1996 gives component ``C leading component ``B by 23.7+/-3.4 days and components ``A1 and ``A2 by 9.4 days. A range of models has been fit to the image positions, none of which gives an adequate fit. The best fitting and most physically plausible of these, taking the lensing galaxy and the associated group of galaxies to be singular isothermal spheres, gives a Hubble constant of 42 km/s/Mpc for Omega=1, with an observational uncertainty of 14%, as computed from the B-C time delay measurement. Taking the lensing galaxy to have an approximately E5 isothermal mass distribution yields H0=64 km/sec/Mpc while taking the galaxy to be a point mass gives H0=84 km/sec/Mpc. The former gives a particularly bad fit to the position of the lensing galaxy, while the latter is inconsistent with measurements of nearby galaxy rotation curves. Constraints on these and other possible models are expected to improve with planned HST observations.



rate research

Read More

87 - Jaiyul Yoo 2005
We use the structure of the Einstein ring image of the quasar host galaxy in the four-image quasar lens PG1115+080 to determine the angular structure of the gravitational potential of the lens galaxy. We find that it is well described as an ellipsoid and that the best fit non-ellipsoidal models are consistent with the ellipsoidal model. We find upper limits on the standard parameters for the m=3 and m=4 deviations from an ellipse of <0.035 and <0.064, respectively. We also find that the position of the center of mass is consistent with the center of light, with an upper limit of 0.005 arcsec on the offset between them. Neither the ellipsoidal nor the non-ellipsoidal models can reproduce the observed image flux ratios while simultaneously maintaining a reasonable fit to the Einstein ring, so the anomalous flux ratio of the A_1 and A_2 quasar images must be due to substructure in the gravitational potential such as compact satellite galaxies or stellar microlenses rather than odd angular structure in the lens galaxy.
95 - C.S. Kochanek 2003
There are now 10 firm time delay measurements in gravitational lenses. The physics of time delays is well understood, and the only important variable for interpreting the time delays to determine H_0 is the mean surface mass density <k> (in units of the critical density for gravitational lensing) of the lens galaxy at the radius of the lensed images. More centrally concentrated mass distributions with lower <k> predict higher Hubble constants, with H_0~1-<k> to lowest order. While we cannot determine <k> directly given the available data on the current time delay lenses, we find H_0=48+/-3 km/s/Mpc for the isothermal (flat rotation curve) models, which are our best present estimate for the mass distributions of the lens galaxies. Only if we eliminate the dark matter halo of the lenses and use a constant mass-to-light ratio (M/L) model to find H_0=71+/-3 km/s/Mpc is the result consistent with local estimates. Measurements of time delays in better-constrained systems or observations to obtain new constraints on the current systems provide a clear path to eliminating the <k> degeneracy and making estimates of H_0 with smaller uncertainties than are possible locally. Independent of the value of H_0, the time delay lenses provide a new and unique probe of the dark matter distributions of galaxies and clusters because they measure the total (light + dark) matter surface density.
107 - Paul L. Schechter 2004
Present day estimates of the Hubble constant based on Cepheids and on the cosmic microwave background radiation are uncertain by roughly 10% (on the conservative assumption that the universe may not be PERFECTLY flat). Gravitational lens time delay measurements can produce estimates that are less uncertain, but only if a variety of major difficulties are overcome. These include a paucity of constraints on the lensing potential, the degeneracies associated with mass sheets and the central concentration of the lensing galaxy, multiple lenses, microlensing by stars, and the small variability amplitude typical of most quasars. To date only one lens meets all of these challenges. Several suffer only from the central concentration degeneracy, which may be lifted if one is willing to assume that systems with time delays are either like better constrained systems with non-variable sources, or alternatively, like nearby galaxies.
Strong lensing gravitational time delays are a powerful and cost effective probe of dark energy. Recent studies have shown that a single lens can provide a distance measurement with 6-7 % accuracy (including random and systematic uncertainties), provided sufficient data are available to determine the time delay and reconstruct the gravitational potential of the deflector. Gravitational-time delays are a low redshift (z~0-2) probe and thus allow one to break degeneracies in the interpretation of data from higher-redshift probes like the cosmic microwave background in terms of the dark energy equation of state. Current studies are limited by the size of the sample of known lensed quasars, but this situation is about to change. Even in this decade, wide field imaging surveys are likely to discover thousands of lensed quasars, enabling the targeted study of ~100 of these systems and resulting in substantial gains in the dark energy figure of merit. In the next decade, a further order of magnitude improvement will be possible with the 10000 systems expected to be detected and measured with LSST and Euclid. To fully exploit these gains, we identify three priorities. First, support for the development of software required for the analysis of the data. Second, in this decade, small robotic telescopes (1-4m in diameter) dedicated to monitoring of lensed quasars will transform the field by delivering accurate time delays for ~100 systems. Third, in the 2020s, LSST will deliver 1000s of time delays; the bottleneck will instead be the aquisition and analysis of high resolution imaging follow-up. Thus, the top priority for the next decade is to support fast high resolution imaging capabilities, such as those enabled by the James Webb Space Telescope and next generation adaptive optics systems on large ground based telescopes.
108 - Masashi Chiba 2005
We present mid-infrared imaging at 11.7 mu m for the quadruple lens systems, PG1115+080 and B1422+231, using the cooled mid-infrared camera and spectrometer (COMICS) attached on the Subaru telescope. These lensed QSOs are characterized by their anomalous optical and radio flux ratios as obtained for (A1, A2) images of PG1115+080 and (A, B, C) images of B1422+231, respectively, i.e., such flux ratios are hardly reproduced by lens models with smooth mass distribution. Our mid-infrared observations for these images have revealed that the mid-infrared flux ratio A2/A1 of PG1115+080 is virtually consistent with smooth lens models (but inconsistent with the optical flux ratio), whereas for B1422+231, the mid-infrared flux ratios among (A, B, C) are in good agreement with the radio flux ratios. We also identify a clear infrared bump in the spectral energy distributions of these QSOs, thereby indicating that the observed mid-infrared fluxes originate from a hot dust torus around a QSO nucleus. Based on the size estimate of the dust torus, we place limits on the mass of a substructure in these lens systems, causing the anomalous optical or radio flux ratios. For PG1115+080, the mass of a substructure inside an Einstein radius, M_E, is < 16 Msun, corresponding to either a star or a low-mass CDM subhalo having the mass of M_{100}^{SIS} < 2.2 * 10^4 Msun inside radius of 100 pc if modeled as a singular isothermal sphere (SIS). For B1422+231, we obtain M_E > 209 Msun, indicating that a CDM subhalo is more likely, having the mass of M_{100}^{SIS} > 7.4 * 10^4 Msun
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا